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What can models do?

What kind of general (algorithmic) problems can current deep learning

models in NLP solve?

Standard Modeling Pipeline (NLP)

Benchmark Dataset (e.g., QA, NLI) Transformer (BERT, T5, GPT3)

model + score (e.g., accuracy)

Tune

output

Behavioral Testing (This work)

Challenge Task for X (synthetic) Transformer (BERT, T5, GPT3)

Can my model effectively do X?

Tune
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Problem: models and (often) datasets are black boxes, cannot look

inside; A real problem for ensuring model correctness and safety.
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E.g., Can models learn (empirically) to solve hard reasoning puzzles?
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What can models do?

What kind of general (algorithmic) problems can current deep learning

models in NLP solve?

Behavioral Testing (This work)

Challenge Task for X (synthetic) Transformer (BERT, T5, GPT3)

Can my model effectively do X?

Tune

output

Big Idea: Cannot demonstrate correctness directly, demonstrate

indirectly using (synthetic) data that is correct by construction.

Insightfulness of results critically depends on quality of
synthetic data, how can we know we have reliable data?
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What can models do?

What kind of general (algorithmic) problems can current deep learning

models in NLP solve?

Behavioral Testing (This work)

Challenge Task for X (synthetic) Transformer (BERT, T5, GPT3)

Can my model effectively do X?

Tune

output

Big Idea: Cannot demonstrate correctness directly, demonstrate

indirectly using (synthetic) data that is correct by construction.

Results only have meaning if data faithfully captures target
problem space, Can we ensure that data is reliable?
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This work: probing deductive reasoning in transformers
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Behavioral Testing of Deductive Reasoning

Task for Deductive Reasoning Transformer (BERT, T5, GPT3)

Deductive reasoning in NL?

Tune

output

NL Theory
(RuleTaker)

ΓNL ={ Bob is round. Alan is blue, rough
and young. If someone is round then
they are big. All rough people are green.
Big people are not green. }

NL Query Bob is not green?

Rule Reasoning: Can models learn to do correct deductive reasoning

over NL Theories (rules and facts)? Clark et al. (2020)
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Behavioral Testing of Deductive Reasoning

Task for Deductive Reasoning Transformer (BERT, T5, GPT3)

Deductive reasoning in NL?

Tune

output

NL Theory
(RuleTaker)

ΓNL ={ Bob is round. Alan is blue, rough
and young. If someone is round then
they are big. All rough people are green.
Big people are not green. }

NL Query Bob is not green? ✓

Why Logic? fundamental to other forms of reasoning, well-understood,

gives insight into the general information aggregation capacity of models.
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Behavioral Testing of Deductive Reasoning: How?

Task Specification

Probing Language L Challenge Task
sampling

Want to see if models can solve hard computational problems, test limits.

Important questions about target tasks:

1. Is our probing language able to express computationally hard problems?

2. Does the sampling procedure effectively find the hard instances?
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Are we asking models to solve hard problems?

1. Is our probing language able to express computationally hard problems?

2. Does the sampling procedure effectively find the hard instances?

Lrule taker boolean logic

Bob is round.... If someone
is round then they are big.
Big people are not green.
Bob is not green?

R(bob)
¬R(bob) ∨ B(bob)
¬B(bob) ∨ ¬G(bob)
G(bob)

complexity of SAT(Lrule taker)? Hard SAT instance?

translate

▸ Seemingly non-trivial problems can be computationally easy; here, easily

solvable in linear time (unit-propagation), common in RuleTaker.

Random sampling does not always result in hard instances; yield

misleading results / harm model robustness (Shin et al., 2019).
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Our Framework

Hard Combinatorial Problem
P (e.g., SAT, 3-Coloring)

Probing Task and
Language L

Hard Challenging Task

Find fragments of L grounded in P

Sample hard instances of P

▸ Ground target probing problems in known hard combinatorial problems;

undertstand complexity and work from known hard problem distributions.

This work: new hard reasoning tasks for deductive rule reasoning and

natural language satisfiability, based on boolean SAT and random kSAT.
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New Tasks: Natural Language Satisfiability (NLSat)
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Natural Language Satisfiability (NLSat)

▸ Deductive reasoning that involves determining whether a set of rules

expressed in natural language has a satisfying assignment.

Used in linguistics and logic to investigate the complexity of rule

fragments of English (Pratt-Hartmann, 2004, 2015).
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Natural Language Satisfiability (NLSat)

▸ Deductive reasoning that involves determining whether a set of rules

expressed in natural language has a satisfying assignment.

Used in linguistics and logic to investigate the complexity of rule

fragments of English (Pratt-Hartmann, 2004, 2015).

ordinary boolean SAT:

(A ∨B ∨ C)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

clause

∧(A ∨ ¬B ∨ C
®

+literal

) ∧ (¬A ∨ ¬B
°
-literal

∨D) (A=T,B=F,C=T,D=T)

Text rendering:

If not apple and not carrot then pear
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(¬A∧¬B)→C

. If not apple and

carrot then pear. If apple and carrot then steak.

(apple=T,carrot=F,pear=T,...)
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Natural Language Satisfiability (NLSat)

▸ Deductive reasoning that involves determining whether a set of rules

expressed in natural language has a satisfying assignment.

Used in linguistics and logic to investigate the complexity of rule

fragments of English (Pratt-Hartmann, 2004, 2015).
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∧(A ∨ ¬B ∨ C
®

+literal

) ∧ (¬A ∨ ¬B
°
-literal

∨D) (A=T,B=F,C=T,D=T)

Text rendering:

(¬A∧¬B)→C≡A∨B∨C
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If not apple and not carrot then pear. If not apple and
carrot then pear. If apple and carrot then steak.

(apple=T,carrot=F,pear=T,...)

Random assignment: variables → nouns (A→apple, B →carrot,

C → pear), clauses → rules: If (not) N1 and (not) N2 then (not) N3.
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∧(A ∨ ¬B ∨ C
®

+literal

) ∧ (¬A ∨ ¬B
°
-literal

∨D) (A=T,B=F,C=T,D=T)

Text rendering:

(¬A(j) ∧ ¬B(j)) → G(j)
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Everyone who is not a gardener and not a cook is a nurse.
Every cook who is not a gardener is a nurse... John is
either a cook or not a nurse or...

(John can be: a gar-

dener, a nurse,..)
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Natural Language Satisfiability (NLSat)

▸ Deductive reasoning that involves determining whether a set of rules

expressed in natural language has a satisfying assignment.

Used in linguistics and logic to investigate the complexity of rule

fragments of English (Pratt-Hartmann, 2004, 2015).

ordinary boolean SAT:

(A ∨B ∨ C)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

clause

∧(A ∨ ¬B ∨ C
®

+literal

) ∧ (¬A ∨ ¬B
°
-literal

∨D) (A=T,B=F,C=T,D=T)

RuleTaker:

If someone is not round and not big then they are green.
If something is big and not round round then they are
green... ¬Bob is not green?

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

negate query: unsat?

Assume finite-domains, instantiate quantifiers to translate to

propositional logic, in the style of Kautz et al. (1992).
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Probing Languages and Rule Fragments

▸ Tasks: Two rule fragments (/ set of rule templates) that can be directly

translated to/from arbitrary 3SAT, computationally hard by design.

Grounded Rule Language (LGRL)

If carrot and not steak then apples. If apples and grapes then no carrots.
If no carrots and no steak then not apples
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

grounded prop. rules

.

Relative clause fragment (LRCL) (partly from (Pratt-Hartmann, 2004))

relative clause construction
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

Every doctor who is not a philosopher is a baker. No baker who is a gar-
dener is a philosopher... John is either a doctor or a baker or not a...

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

disjunctive rules
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Probing Languages and Rule Fragments

▸ Tasks: Two rule fragments (/ set of rule templates) that can be directly

translated to/from arbitrary 3SAT, computationally hard by design.

Grounded Rule Language (LGRL)
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If no carrots and no steak then not apples
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grounded prop. rules

.
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³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

Every doctor who is not a philosopher is a baker. No baker who is a gar-
dener is a philosopher... John is either a doctor or a baker or not a...

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

disjunctive rules

10



Sampling: how to find hard problems

▸ Solving 3SAT is computationally hard under a worst-case analysis; does

not mean that all problems are hard.

Generating hard random kSAT problems is well-studied (Selman et al.,

1996), lies at critical thresholds; can use to sample hard examples.

Hard Sampling: Sampling from
critical regions of random 3SAT,
compare against other sampling
strategies (e.g., easy only, random).

11



Sampling: how to find hard problems

▸ Solving 3SAT is computationally hard under a worst-case analysis; does

not mean that all problems are hard.

Generating hard random kSAT problems is well-studied (Selman et al.,

1996), lies at critical thresholds; can use to sample hard examples.

Hard Sampling: Sampling from
critical regions of random 3SAT,
compare against other sampling
strategies (e.g., easy only, random).

11



Sampling: how to find hard problems

▸ Solving 3SAT is computationally hard under a worst-case analysis; does

not mean that all problems are hard.

Generating hard random kSAT problems is well-studied (Selman et al.,

1996), lies at critical thresholds; can use to sample hard examples.

Hard Sampling: Sampling from
critical regions of random 3SAT,
compare against other sampling
strategies (e.g., easy only, random).

11



Summary of Datasets and Comparison

Grounded rule (GRL) and Relative clause (RCL) fragments, instances

translated from hard random 3SAT across different # variables.

parameters: # variables, for RCL: #vars. = # ground variables (after

quantifier instantiation), random var .→ nouns/selection of templates.

Language complexity and SAT metrics
Dataset
(d#vars)

Size Complexity
(NP-

complete?)

Conflicts
(avg/med.)

Decisions
(avg/med.)

RuleTaker 130k yes 0.0,/0.0 6.6/0.0
GRL5,12 187k yes 3.4/4.0 5.4/4.0
RCL16,70 219k yes 7.6/6.0 29.7/6.0
GRL-eval20,50 17k yes 22.0/13.0 29.3/13.0

Similar in size to RuleTaker, out of domain evaluation set,

higher empirical complexity

RuleTaker: Hard language, empirically simplest forms of reasoning,

solvable through pre-processing.

12



Summary of Datasets and Comparison

Grounded rule (GRL) and Relative clause (RCL) fragments, instances

translated from hard random 3SAT across different # variables.

parameters: # variables, for RCL: #vars. = # ground variables (after

quantifier instantiation), random var .→ nouns/selection of templates.

Language complexity and SAT metrics
Dataset
(d#vars)

Size Complexity
(NP-

complete?)

Conflicts
(avg/med.)

Decisions
(avg/med.)

RuleTaker 130k yes 0.0,/0.0 6.6/0.0
GRL5,12 187k yes 3.4/4.0 5.4/4.0
RCL16,70 219k yes 7.6/6.0 29.7/6.0
GRL-eval20,50 17k yes 22.0/13.0 29.3/13.0

Similar in size to RuleTaker, out of domain evaluation set,

higher empirical complexity

RuleTaker: Hard language, empirically simplest forms of reasoning,

solvable through pre-processing.

12



Summary of Datasets and Comparison

Grounded rule (GRL) and Relative clause (RCL) fragments, instances

translated from hard random 3SAT across different # variables.

parameters: # variables, for RCL: #vars. = # ground variables (after

quantifier instantiation), random var .→ nouns/selection of templates.

Language complexity and SAT metrics
Dataset
(d#vars)

Size Complexity
(NP-

complete?)

Conflicts
(avg/med.)

Decisions
(avg/med.)

RuleTaker 130k yes 0.0,/0.0 6.6/0.0
GRL5,12 187k yes 3.4/4.0 5.4/4.0
RCL16,70 219k yes 7.6/6.0 29.7/6.0
GRL-eval20,50 17k yes 22.0/13.0 29.3/13.0

Similar in size to RuleTaker, out of domain evaluation set, higher

empirical complexity

RuleTaker: Hard language, empirically only simplest forms of

reasoning, solvable through pre-processing.

12



Summary of Datasets and Comparison

Grounded rule (GRL) and Relative clause (RCL) fragments, instances

translated from hard random 3SAT across different # variables.

parameters: # variables, for RCL: #vars. = # ground variables (after

quantifier instantiation), random var .→ nouns/selection of templates.

Language complexity and SAT metrics
Dataset
(d#vars)

Size Complexity
(NP-

complete?)

Conflicts
(avg/med.)

Decisions
(avg/med.)

RuleTaker 130k yes 0.0,/0.0 6.6/0.0
GRL5,12 187k yes 3.4/4.0 5.4/4.0
RCL16,70 219k yes 7.6/6.0 29.7/6.0
GRL-eval20,50 17k yes 22.0/13.0 29.3/13.0

Similar in size to RuleTaker, out of domain evaluation set, higher

empirical complexity

RuleTaker: Hard language, empirically involves simplest forms of

reasoning, solvable through pre-processing.

12



Summary of Datasets and Comparison

Grounded rule (GRL) and Relative clause (RCL) fragments, instances

translated from hard random 3SAT across different # variables.

parameters: # variables, for RCL: #vars. = # ground variables (after

quantifier instantiation), random var .→ nouns/selection of templates.

Language complexity and SAT metrics
Dataset
(d#vars)

Size Complexity
(NP-

complete?)

Conflicts
(avg/med.)

Decisions
(avg/med.)

RuleTaker 130k yes 0.0,/0.0 6.6/0.0
GRL5,12 187k yes 3.4/4.0 5.4/4.0
RCL16,70 219k yes 7.6/6.0 29.7/6.0
GRL-eval20,50 17k yes 22.0/13.0 29.3/13.0

Similar in size to RuleTaker, out of domain evaluation set, higher

empirical complexity

RuleTaker: Hard language, empirically involves simplest forms of

reasoning, solvable through pre-processing.

12



Summary of Datasets and Comparison

Grounded rule (GRL) and Relative clause (RCL) fragments, instances

translated from hard random 3SAT across different # variables.

parameters: # variables, for RCL: #vars. = # ground variables (after

quantifier instantiation), random var .→ nouns/selection of templates.

Language complexity and SAT metrics
Dataset
(d#vars)

Size Complexity
(NP-

complete?)

Conflicts
(avg/med.)

Decisions
(avg/med.)

RuleTaker 130k yes 0.0,/0.0 6.6/0.0
GRL5,12 187k yes 3.4/4.0 5.4/4.0
RCL16,70 219k yes 7.6/6.0 29.7/6.0
GRL-eval20,50 17k yes 22.0/13.0 29.3/13.0

Similar in size to RuleTaker, out of domain evaluation set, higher

empirical complexity

Our datasets: Test a wider-range of reasoning types and difficulty;

(caveat) still relatively easy SAT problems, highly verbose.
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Experimental Setup

▸ Binary decision task (accuracy % sat vs. unsat); Two models: T5-large

(Raffel et al., 2020), RoBERTa-large (Liu et al., 2019).

Standard fine-tuning set up following Clark et al. (2020), tuned to

maximize dev. accuracy.

NL Satisfiability T5/RoBERTa

...solve SAT problems in NL?

Full fine-tuning

output

▸ I.I.D train/test: Solving natural language satisfiability problems

involving problems with a fixed number of variables.

▸ Scale-invariance: testing models on problems of larger scope and

differing number of variables.
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Can models solve natural language satisfiability problems?

it’s complicated...
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Result 1: Models can solve (some) hard tasks

▸ Models are capable of solving new problems (i.i.d setting),

with degradation of performance as a function of # variables.

Grounded Rule Language GRL, Accuracy%
Model (# variables.) 5var 7var 8var 10var 12var Avg.
Random 50.0 50.0 50.0 50.0 50.0 50.0
T55,7,8,10,12 98.0 95.4 94.3 90.7 88.3 93.4
RoBERTa5,7,8,10,12 96.4 92.0 90.2 85.4 83.4 89.5

Grounded Relative Clause Language RCL, Accuracy%
Model (# ground var.) 16,21v 25,32v 35,48v 60,70v Avg.
Random 50.0 50.0 50.0 51.2 50.3
T516,70 95.9 95.3 94.7 92.9 94.7
RoBERTa16,70 96.0 95.9 94.9 94.0 95.2

Can models solve NL satisfiability problem? Positive results for smaller

variable problems; not completely solved; require many examples.
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Can models solve NL satisfiability problem? It depends on the number of

variables, still not an entirely solved task. (GRL)

15



Result 2: Models have limited scale invariance

▸ Models exhibit some degree of scale invariance, though

lack generalization ability expected for robust deductive reasoning.

main GRL (i.i.d) o.o.d eval(20-50 variables)
Model 5var 8var 10var 12var 20var 30var 40var 50var
T5
(v=8)

96.2
94.0

92.4
87.9

87.7
81.6

73.6
74.8

74.4
67.5

67.1
58.3

53.5
51.2

50.1
50.0

T5
(v=10)

93.9
89.7

92.7
86.3

89.7
82.5

79.0
76.7

78.6
70.0

71.2
60.1

54.7
51.4

50.1
50.0

T5
(v=12)

94.5
91.1

91.5
84.9

87.7
80.7

77.3
81.0

77.8
70.1

70.7
60.3

53.3
51.4

50.0
50.0

T5
(v=5,12)

98.6
98.1

96.0
93.6

92.6
89.6

85.0
88.5

86.5
80.7

84.9
72.7

69.8
61.4

59.1
51.8

5-12 variable models can solve 20-30 variable problems far above random

chance, large differences between hard/easy distribution though.
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hard

distribution.
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Result 2: Models have limited scale invariance

▸ Models exhibit some degree of scale invariance, though

lack generalization ability expected for robust deductive reasoning.

main GRL (i.i.d) o.o.d eval(20-50 variables)
Model 5var 8var 10var 12var 20var 30var 40var 50var
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Can models solve NL satisfiability problem? It depends on the distribution

of problems being evaluated, results can look very different.
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Can models solve NL satisfiability problem? Far from learning underlying

algorithm, not scale-invariant. Challenge: how to improve this?
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Effective sampling is important

▸ Experimented with different sampling strategies: sampling via hard vs.

easy distributions, naive sampling (randomly selecting).

Accuracy%
Model (sampling strategy) easy5,10 hard5,10

T5-GRL v=10 (biased) 88.4 77.1
T5-GRL v=10 (naive) 89.7 78.7
T5-GRL v=10 (hard) 92.4 86.4

Can models solve NL satisfiability problem? Depends critically on the

distribution of SAT problems and on sampling strategy.
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Effective sampling is important: RuleTaker

▸ Random SAT can be retrofitted to find hard instances in existing tasks

such as RuleTaker (Clark et al., 2020) (RT).

Model accuracy (%)
evaluation Majority RT-T5 RT-RoBERTa

RuleTaker (RT) (standard) 43.0 97.5 98.7
Hard RT (SAT sampling) 50.0 57.7 59.6

Another reminder: Naive sampling can yield misleading results. Future:

Understanding the exact problem distributions of existing NLP tasks.
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Conclusions

▸ Investigated methodology for probing rule reasoning in pre-trained

transformers, map probing tasks to existing combinatorial problems.

Challenge Task: solving SAT problems in NL, created via hard

distributions of random kSAT , harder than existing challenges.

▸ Findings: positive results on some sub-sets, though limited

scale-invariance and grasp of underlying problem.

methodological: Results depend critically understanding target

problem distribution, effective sampling strategy.

open challenge: How to train models to be more robust,

scale-invariant for reasoning?
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A Final Lesson from empirical SAT

Can SAT solvers (empirically) solve hard SAT problems?

Random formulas have been used by many researchers to
empirically evaluate the performance of SAT testing programs.
The value of such studies depends upon careful selection of
of formula distribution... When using random formulas, an
extensive enough study of the distribution’s parameter space
must be carried out ... if the results are to be meaningful.

Mitchell and Levesque (1996) Some pitfalls for experiments with random SAT

▸ Same for probing: understanding the target problem distribution and

how to sample hard cases is essential for understanding model behavior.
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Thank you.
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