

Pushing the Limits of Rule Reasoning in Transformers through Natural Language Satisfiability

Kyle Richardson, Ashish Sabharwal

- **Rule Reasoning (RuleTaker):** can transformers learn correct deductive reasoning over logical theories expressed in natural language? (Clark et al. 2020)
- Why Logic? Fundamental to other forms of reasoning, basic informationaggregation (IA) problem, understand limits of IA in transformers.

NL Theory (RuleTaker)	<pre>\[\Gamma_NL = \{ Bob is round. Alan is blue, rough and young. If someone is round then they are big. All rough people are green. Big people are not green. \}</pre>
NL Query	Bob is not green? \checkmark

Desiderata: Behavioral tests should faithfully capture the target problem space, include the hardest cases for results to be meaningful.

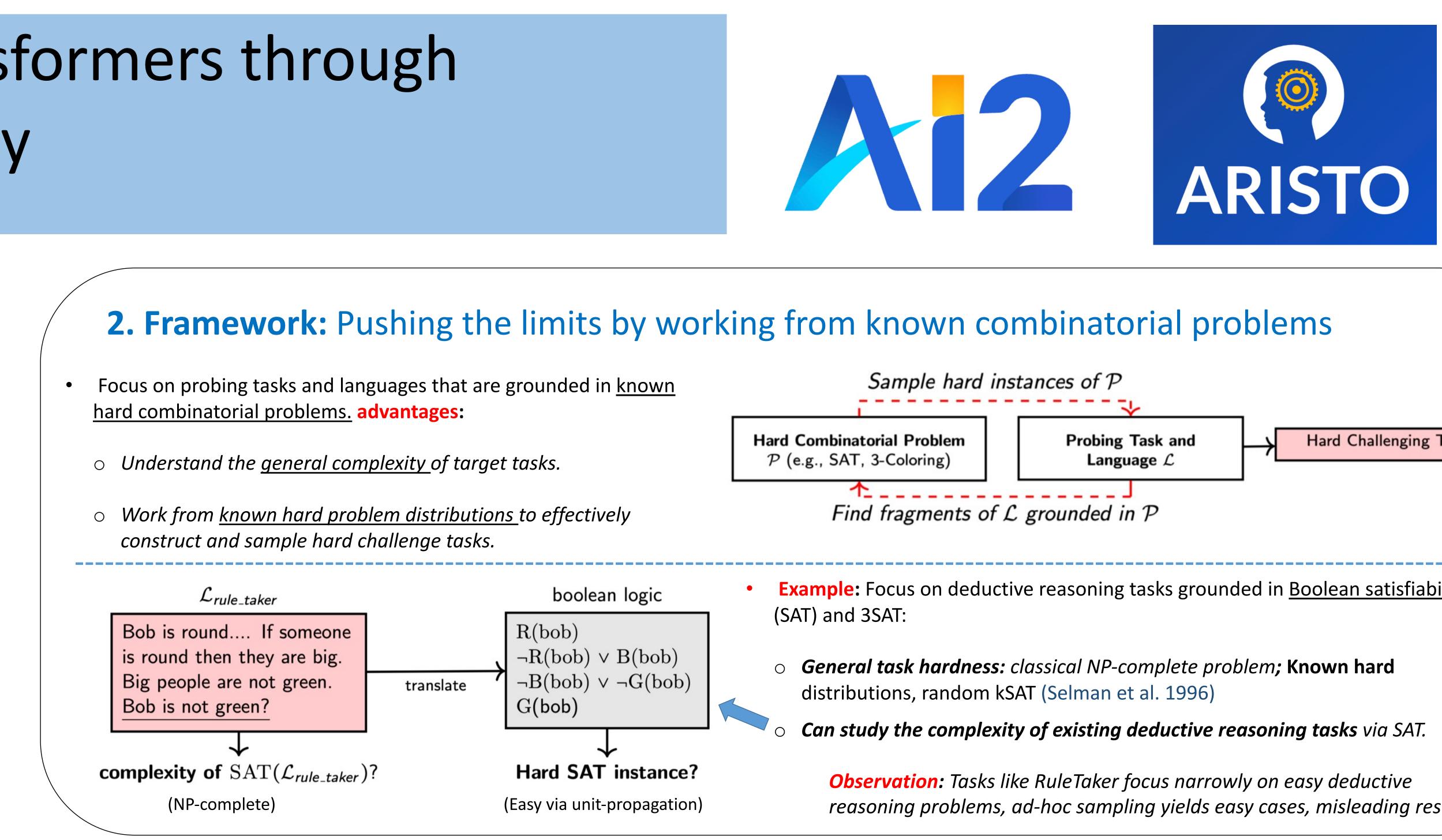
Pushing the Limits (this work) How difficult can we make the problems? General framework for ensuring task hardness and obtaining more reliable empirical performance bounds.

Two rule fragments investigated:

Grounded Rule Language (GRL): translation of 3SAT into logically equivalent NL propositional rules, nouns as variables.

Relative Clause Fragment (RCL): 3SAT clauses to relative clause constructions, nouns as variables (Pratt-Hartmann 2004).

		Language co	omplexity and	SAT metrics
	Size	Complexity	Conflicts	Decisions
		(NP-	(avg/med.)	(avg/med.)
		complete?)		
er	130k	yes	0.0,/0.0	6.6/0.0
	187k	yes	3.4/4.0	5.4/4.0
	219k	yes	7.6/6.0	29.7/6.0
l _{20,50}	17k	yes	22.0/13.0	29.3/13.0


- Models can robustly solve setting) despite increased
- Clear <u>degradation of p</u> variables; models lack
- Still room for improven

 Generalization: exhibit sor kind of generalization skill deductive reasoning

> Challenge: how can we invariant and robust al

- Model performance looks training and testing proble sampling/understanding p

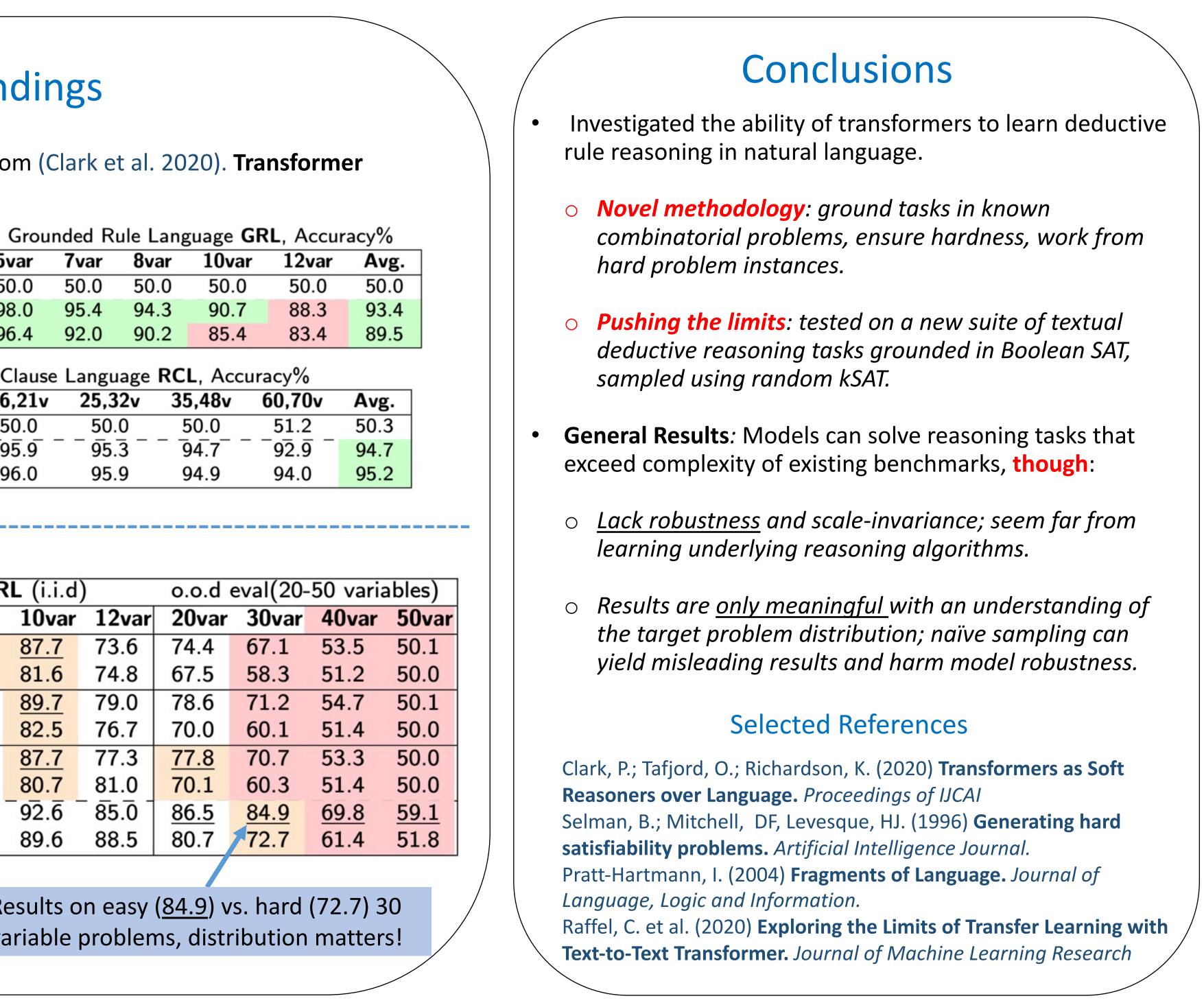
4. Experiments and General Findings

Task: binary prediction task (**sat** vs. **unsat,** Acc %); standard fine-tuning set up from (Clark et al. 2020). **Transformer** models: T5-large (Raffel et al. 2020) and RoBERTa-large (Liu et al. 2019).

				Groun	ueu nuie	E Languag	ge GRL, A	ALL
	Model (# var	riables.)		5var	7var 8	8var 1() var 1	2va
<u>ve some new problems (i.i.d</u>	Random			50.0	50.0 5	50.0 5	0.0 5	6.0
d difficulty, important caveats :	T5 _{5,7,8,10,12}			98.0	95.4 9	94.3 9	0.7 8	8.3
	RoBERTa _{5,7}			96.4	92.0 9	90.2 8	5.4 8	3.4
performance as a function of #	Gro	unded I	Relativ	e Clause	Languag	ge RCL , A	Accuracy	%
k training efficiency.	Model (# grou	und var.)		16,21v	25,32v	/ 35,48	sv 60,7	70v
	Random	14-18 1 (1717) (1717)	8-9 5-6 5-5	50.0	50.0	50.0	51	.2
	T5 _{16,70}			95.9	95.3	94.7	<u> </u>	.9
ement, <u>not a solved task</u> .	RoBERTa _{16,7}	70		96.0	95.9	94.9	94	.0
ome scale-invariance, still <u>lack the</u>		r	nain (GRL (i.i.	d)	0.0.0	eval(20	
Ils we would expect for robust	Model	5var	8vai	r 10v a	ar 12va	ar 20va	r 30va	r 4
·	T5	96.2	92.4	87.7	73.6	74.4	67.1	Ę
	(v=8)	94.0	87.9			67.5	58.3	5
	T5	93.9	92.7	89.7	79.0	78.6	71.2	Ę
e train models to be scale-	(v=10)	89.7	86.3	8 82.5	76.7	70.0	60.1	Ę
Igorithmic learners?	T5	94.5	91.5	87.7	77.3	77.8	70.7	Ę
	(v=12)	91.1	84.9	80.7	81.0	70.1	60.3	5
s very different depending on	Ť5 - ~	98.6	96.0	92.6	85.0	86.5	84.9	e
lem distribution,	(v=5,12)	98.1	93.6	6 89.6	88.5	80.7	72.7	e
problem distr. is very important.								
		с • ,		Roculto	on one	$\sqrt{8/9}$	vs har	1 /7

Discovering hard instances of existing tasks: Showed how to retrofit random kSAT instances to find hard RuleTaker instances, more effective sampling.

Results on easy (84.9) vs. hard (72.7) 30 variable problems, distribution matters!


Sample hard instances of \mathcal{P}

	· · · · · · · · · · · · · · · · · · ·	
ard Combinatorial Problem \mathcal{P} (e.g., SAT, 3-Coloring)	Probing Task and Language \mathcal{L}	Hard Challenging Task
<u> </u>		
Find fragments of L	\mathcal{L} grounded in \mathcal{P}	

Example: Focus on deductive reasoning tasks grounded in <u>Boolean satisfiability</u>

- General task hardness: classical NP-complete problem; Known hard distributions, random kSAT (Selman et al. 1996)
- **Can study the complexity of existing deductive reasoning tasks** via SAT.

Observation: Tasks like RuleTaker focus narrowly on easy deductive reasoning problems, ad-hoc sampling yields easy cases, misleading results

