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General framework for ensuring task hardness and obtaining more reliable
empirical performance bounds.

1. Question: What types of algorithmic problems can transformers in NLP solve? 2. Framework: Pushing the limits by working from known combinatorial problems
Standard Modeling Pipeline a la Devlin et al. (2018) i e Rule Reasoning (RuleTaker): can transformers learn correct deductive reasoning * Focus on probing tasks and languages that are grounded in known Sample hard instances of P
| : : : : : e - ity |
BEncha: DRESEaE fo.q, GANL] T i over logical theories expressed in natural language? (Clark et al. 2020) hard combinatorial problems. advantages: ! n'a
s iune : Hard Combinatorial Problem Probing Task and 3  Hard Challenging Task
! e i * Why Logic? Fundamental to other forms of reasoning, basic information- o Understand the general complexity of target tasks. P (eg.. SAT, 3-Coloring) Language L
e A s $ Can my model effectively do X? i aggregation (IA) problem, understand limits of IA in transformers. I e s e J
! o Work from known hard problem distributions to effectively Find fragments of L grounded in P
Problem: Models and datasets are black boxes, hard to interpret; i NL Theory N ={ Bob is round. Alan is blue, rough construct and sample hard challenge tasks.
serious issue for understanding model safety and correctness. : (RuleTaker) and young. If someone is round then | | | ommm e e e e e e e e e oo mssmmmmmseeee
i they are big. All rough people are green. B e boolean logic  Example: Focus on deductive reasoning tasks grounded in Boolean satisfiability
Behavioral Testing (This work) : green. } : (SAT) and 3SAT:
: T — k. Bob is round.... If someone R(bob)
: u DoDb IS not green! v : :
e T for A Tome 7| SN BERT DGR T i |s-round then they are big. ~R(bob) v B(bob) o General task hardness: classical NP-complete problem; Known hard
loutput i * Desiderata: Behavioral tests should faithfully capture the target problem Elogbpisonpc:: g:ze:(;t ARSI translate é]?égg;)) v =G(bob) distributions, random kSAT (Selman et al. 1996)
| \ . | space, include the hardest cases for results to be meaningful. : ~ ) o ] ] _
Fee=s-c---c-e=======2 Can my model effectively do X i P 5 T ~L o Can study the complexity of existing deductive reasoning tasks via SAT.
I ° ° [ . . .
Behavioral Testing: understanding model behavior/competence and i Pushing the Limits (this work) How difficult can we make the problems? complexity of SAT (L use_taker)? Hard SAT instance? Observation: Tasks like RuleTaker focus narrowly on easy deductive
|
|
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limitations through systematically constructed challenge tasks. (NP-complete) (Easy via unit-propagation) reasoning problems, ad-hoc sampling yields easy cases, misleading results

Conclusions

3. New Tasks for rule reasoning and Natural Language Satisfiability 4. Experiments and General Findings
* Investigated the ability of transformers to learn deductive
* Natural Language Satisfiability (NLSat): deductive reasoning task that involves determining whether a set of rules * Task: binary prediction task (sat vs. unsat, Acc %); standard fine-tuning set up from (Clark et al. 2020). Transformer rule reasoning in natural language.
in natural language has a satisfying assignment (Pratt-Hartmann 2004); mirrors ordinary propositional SAT. models: T5-large (Raffel et al. 2020) and RoBERTa-large (Liu et al. 2019) . .
o Novel methodology: ground tasks in known
. . Grounded Rule Language GRL, Accuracy% combinatorial problems, ensure hardness, work from
Ordlnal’y b00|ean SAT Model (# variables.) Svar Tvar 8var 10var 12var Avg hard problem jnstances.
* Models can robustly solve some new problems (i.i.d ' Random 50.0 50.0 50.0 50.0 50.0 50.0
(AvBvVC)A(AV-Bv £ )A(-AV =B vD)  (A=T,B=F,c=T,D=T) setting) despite increased difficulty, important caveats: :_;55,7,8,10,12 98.0 94 943 90.7 = 883 934 o Pushing the limits: tested on a new suite of textual
N — y _ e oBERTas 7.5 10.12 96.4 920 90.2 854 834 895 , , ,
ol +literal literal | deductive reasoning tasks grounded in Boolean SAT,
Text rendering: Two rule fragments investigated: o Clear degradation of performance as a function of # Grounded Relative Clause Language RCL, Accuracy% sampled using random kSAT.
variables; models lack training efficiency. Model (# ground var.) 16,21v 25,32v  35,48v  60,70v  Avg.
(~AA-B)—~C=AVBVC Grounded Rule Language (GRL): : 23{:‘3? _________ g g_:g_ s g 3‘(5):2 = = _32_:(7)_ - _g_;:g - gg:; * General Results:' Model§ can solve reasoning tasks that
If not apple and not carrot then pear. If not apple and  (apple=T,carrot=F,pear=T,...) translation of 3SAT into logically equivalent o Still room for improvement, not a solved task. RoBERTa1 70 96.0 95.9 94.9 94.0  95.2 exceed complexity of existing benchmarks, though:
carrot then pear. If apple and carrot then steak. NL propositional rules, nouns as variables. : ]
_________________________________________________________________________________________________________________ o Lack robustness and scale-invariance; seem far from
(-A() A =B()) = G()) Relative Clause Fragment (RCL): 3SAT learning underlying reasoning algorithmes.
Everyone who is not a gardener and not a cook is a nurse. (John can be: a gar-  Clauses to relative clause constructions, ° Generalization: exhibit some scale-invariance, still lack the main GRL (i.i.d) 0.0.d eval(20-50 variables) o Results are only meaningful with an understanding of
Every cook who is not a gardener is a nurse... John is  dener, a nurse,..) nouns as variables (Pratt-Hartmann 2004) . kind of generalization skills we would expect for robust Model Svar 8var 10var 12var| 20var 30var 40var S50var bttt ion. Ao -
ry g : : . . T 962 004 877 736 | 744 671 535 501 the target problem distribution; naive sampling can
either a cook or not a nurse or... deductive reasoning. (v=8) 94' 0 57—9 m . 4.8 67.5 58.3 51'2 50'0 yield misleading results and harm model robustness.
------------------------------------------------------------------------------------------------------ Cha”en e: hOW can we train models to be Sca/e_ T5 939 927 —897 790 786 712 547 501
Language complexity and SAT metrics : : ge- d rob | chmic | 5 (v=10) 89.7 86.3 825 76.7 | 70.0 60.1 514 50.0 Selected References
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