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O What can you tell me about the seminar on formal languages and neural networks
(FLaNN) that's held online? Please be brief but tell me some example topics they
user might discuss.

Assistant

The Seminar on Formal Languages and Neural Networks (FLaNN) is an online

ChatGPT
event that focuses on the intersection of formal language theory and neural

network research. Topics they might discuss include:
Response

Applications of formal languages in neural network architectures
Neural network models for language processing

Algorithmic learning theory related to formal languages
Automata theory and neural computation

Symbolic and subsymbolic integration in Al systems

P> We routinely use LLMs for writing code, integrate within complex
systems, use for tasks like scientific discovery.
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» Dilemma: we know vanishingly little about commercial models, models

preferences

and datasets in general are huge, opaque.
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An obvious problem for safety and applications, but also for deciding
what research to do, how to innovate.
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Today: can we formally characterize the semantics of preference tuning

and alignment? Both for understanding and innovation; armchair NLP.
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Questions: What do we do when we tune models to preferences? Can

these underlying principles help us to discover better algorithms?
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input x:
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Offline preference alignment in a nutshell

P Given an offline or static dataset consisting of pairwise preferences for
input x:
DP:{( 7.yw7.yl ))}
i=1

optimize a policy model y ~ mg(- | x) (LLM) to such preferences.

Safety example (Dai et al., 2024; Ji et al., 2024)

x : Will drinking brake fluid kill you?
i = No, drinking brake fluid will not kill you

w : Drinking brake fluid will not kill you, but it can be extremely
dangerous... [it] can lead to vomiting, dizziness, fainting, ....



Direct preference alignment (DPA) algorithms

P Recent direct preference alignment (DPA) approaches assume a
closed-form loss function, takes the form (Tang et al., 2024):

lopa(0,D):= E {f(pm ﬁ)]

(x,yw,y1)~Dp
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Direct preference alignment (DPA) algorithms

P Recent direct preference alignment (DPA) approaches assume a
closed-form loss function, takes the form (Tang et al., 2024):

KDPA(G, D) = E |:f(p97 /6):|
(%,Ywy1)~Dp
Examples: DPO (Rafailov et al., 2024)

ool 5 mo(yw [ X) We(yIIX)D}
<X,wa§,>~op{ 'f (" {'°g (e [2) E e [2) )]

log ratio difference pg
logistic log loss f

As a discrete reasoning problem: reasoning about relationships
between our policy model g and a reference model 7.



Direct preference alignment (DPA) algorithms

P Recent direct preference alignment (DPA) approaches assume a
closed-form loss function, takes the form (Tang et al., 2024):

lopa(0,D):= E {f(pm ﬁ)}

(x,yw,y1)~Dp

Examples: DPO (Rafailov et al., 2024)
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logistic log loss f

Question: What kind of discrete reasoning problem does pg
encode? E.g., if expressed as a symbolic expression.



Direct preference alignment (DPA) algorithms

P Recent direct preference alignment (DPA) approaches assume a
closed-form loss function, takes the form (Tang et al., 2024):

lopa(0,D):= E {f(pm ﬁ)}

(x,yw,y1)~Dp

Examples: (Azar et al., 2023; Zhao et al., 2022)

f(po,B) = Po properties
DPO — log o(Bpe) log T (wlx) log no(ylx)  logistic log loss
IPO (pg — ﬁf Tref(Yw [X) Tref(y1]X) squared loss
S1iC  max(0, 8 — pg) log % hinge loss




Direct preference alignment (DPA) algorithms

P Recent direct preference alignment (DPA) approaches assume a
closed-form loss function, takes the form (Tang et al., 2024):

lopa(0,D):= E {f(pm ﬁ)}

(x,yw,y1)~Dp

Examples: (Azar et al., 2023; Zhao et al., 2022)

f(po,B) = Po properties
DPO — log o(Bpe) log T (wlx) log no(ylx)  logistic log loss
IPO (pg — ﬁf Tref(Yw [X) Tref(y1]X) squared loss
S1iC  max(0, 8 — pg) log % hinge loss

Same question: What kind of discrete reasoning problems do S1iC
and IPO involve? How are they related?
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quantity pg, experiment.
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Coming up with a new preference loss

P Recent direct preference alignment (DPA) approaches assume a
closed-form loss function, takes the form (Tang et al., 2024):

lopa(0,D):= E {f(pm ﬁ)}

(x,yw,y1)~Dp

The procedure: Select a convex loss function f, define some model

quantity pg, experiment.
1. (theory) What is the right f to use? Theoretical limitations and
properties of Bradley-Terry model or other variants.

2. (empirical) Can we devise novel algorithmic variants of DPO and po?
Find the next best preference algorithm?

our work: How do we define new pgs and what is the size and
structure of this space?



Some observations about variations of DPO



A look at the structure of DPO loss functions

P Looking at different preference approaches through time.
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A look at the structure of DPO loss functions

P Looking at different preference approaches through time.

Approach Loss equation 7 (pyg,
S1iC (Zhao et al., 2022) log 7;99();7”:))
o (yw]x)
CPO (Xu et al., 2024) log e
Remove optimization details, log ratio syp(yw, y1) := log :Z(};T\IXX))’

regularizer terms, length normalization, core loss equations pg.



note: This is a messy area, idiosyncratic.



A look at the structure of DPO loss functions

P Looking at different preference approaches through time.

Approach Loss equation 7 (pyg,
i o (Yw|x)
S1iC (Zhao et al., 2022) log D
o (Yw]x)
CPO (Xu et al., 2024) log e
RRHF (Yuan et al., 2024 log ToUwl) |
(Yuan et al., 2024) R
Remove optimization details, log ratio sg(yw, i) := log Z& =) (Yw|x)

. . mo(yilx)
regularizer terms, length normalization, core loss equations pg.



observation: same log ratios keep coming up



question: What do these log ratios mean semantically?



A look at the structure of DPO loss functions

P Looking at different preference approaches through time.

Approach Loss equation /(pg,
; o (Yw|x)
51iC (Zhao et al., 2022) log A IE)
o (Yw|x)
CPO (Xu et al., 2024) log ENOIE)
RRHF (Yuan et al., 2024) log Zelwld)
mo(yilx)

Adding a reference model, involves adding an additional term:

log To(Yw | X) “log Tref(Yw | X)
DPO mo(y1 | X) Teef(Y1 | X)

So(Ywy1) reference policy
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The recipe for creating new variants of DPO

|Og ﬂ'ﬁ(yw | X) _ IOg 71-ref(_yw ‘ X)
DPO mo(yr | x) Trer(V1 | X)

so(ywsy1) Sref (Yo :y1)

» Type 1: Add additional terms to loss.

Variant Core Loss equation pg

R-DPO (Park et al., 2024)  sa(Vw, Y1) — Sref(Yw, Y1) + Viength
ODPO (Amini et al., 2024)  sg(Yw, Y1) — Sref(Yw, Y1) — Yoffset

Tref (XsYw)

DPOP (Pal et al., 2024) s0(Yw, Y1) — Sref(Yw, y1) — log = X




The recipe for creating new variants of DPO

ﬂ'ﬁ(yw | X) 71-ref(_yw ‘ X)
log —log
DPO 7r9(y/ | X) 7rref(}// ‘ X)
so(ywsy1) Sref (Yo :y1)

» Type 1: Add additional terms to loss.

Variant Core Loss equation pg

R-DPO (Park et al., 2024)  sa(Vw, Y1) — Sref(Yw, Y1) + Viength
ODPO (Amini et al., 2024)  sg(Yw, Y1) — Sref(Yw, Y1) — Yoffset

Tref (XsYw)

DPOP (Pal et al., 2024) s0(Yw, Y1) — Sref(Yw, y1) — log )

» Type 2: Change or re-parameterize reference ratio.

Variant Core Loss equation pg

ORPO (Hong et al.,, 2024)  so(yw, yi) — log 11:117%

SimPO (Meng et al., 2024)  so(Yw, Y1) — Vpenalty



question: What happens when we add new terms?



Haven't these semantic questions been looked at before?

Analytic philosophy: Much work on the semantics of pairwise

preference, rich languages for expressing ideas.

RICHARD C | FFFREY THE STATUS OF VARIOUS Pl‘z:::gug::hmncxnxs
Pmiennce Principle Wright  Sosa Max‘tm P* px po
1. pPg — ~(qPp) v v + o+ +
2. (pPq & gPr) — pPr v v / + o+ o+
8. pPg— ~qP~p x v (+;1 + 4+
4. ~gP~p—pPq x Voo + o+
5. pPg — (P&"‘GP("‘P&) v x + 4+ 4+
6. (p& ~q) P(~p &g) f x 4+ + 4+
7 [~(‘°P~g)&~(~ ;;? & ~(gPng) &
~(~qPg)] [~£ q) & ~(qPp)] v + + +
ppbchbelte, 1 11
. [~(@P~ ~(~qPq) & gP~p] > pPr -
10. pPg o[ &) PG &7) &(p &~ .
11 [(P & V) P(g &) & (p & ~7) Pg & ~7))
Pg () (+)* +
:g [~(PP4) & ~(qu)] —’ ~(PP7) v v -
}gf pvq)i’y-.[p i ’ - - =
Sovond i& Crabns gfz" ;, - -z
on - PP vV = = =
s 18. ?pf%w}:m(i iy S
19. (pPr & qPr) — (p & q) Pr _ = =

(Jeffrey, 1965) Semantic foundations for the logic of preference Rescher (1967)
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The language of machine learning

Loss functions

ToywlX) (ywlx)
—logo <ﬁ log — — Blog = Wref )>

Tref(Yw|x)

i

Specification or theory of preference?

P Frustration: the language of machine learning is not very rich, hard to

express complex ideas, come up with improved algorithms, barrier.

Broader goal: High-level modeling languages for specifying and
better understanding LLMs and their algorithms.

10



Formalization of preference losses
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Preference learning as a discrete reasoning problem

Loss Function

_ m(ywlx) To(vix)
log o ( log 7 i) — 108 mef(mx))
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Two models, four predictions

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?



Preference learning as a discrete reasoning problem

Symbolic Program Loss Function
Implies(
And(M(x,ys),Ref (x,yw ), _ Towlx) oo Ta(1X)
And(M(x,yw ), Ref(x,y/)) log @ ( log Tref(Yw|x) log Tref(¥1x)
)

T

High-level model behavior

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?
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Preference learning as a discrete reasoning problem

Symbolic Program Loss Function
Implies(
And(M(x,y;),Ref(X,yw)), _ me(ywlx) mp(yilx)
And(M(x,yw ), Ref(x,y/)) log o { log Tref(Yw|) log Tref(y1]x)
)
Decompilation < » Compilation

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?

1. Compilation: Translating specifications into loss, well studied.

11



Preference learning as a discrete reasoning problem

Symbolic Program Loss Function
Implies(
And(M(x,ys),Ref (x,yw ), _ Towlx) oo Ta(1X)
And(M(x,yw ), Ref(x,y/)) log @ ( log Tref(Yw|x) log Tref(¥1x)
)

Decompilation < » Compilation

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?

1. Compilation: Translating specifications into loss, well studied.

2. Decompilation:Losses to specifications (inverse), less explored.
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Symbolic Program

RASP, LTL, FO(M)

Model

Transformer weights
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Distilling LLMs to symbolic programs in general

Symbolic Program

RASP, LTL, FO(M)

Model

Decompilation ¢

Transformer weights

P We know what the target languages are (Weiss et al., 2021; Merrill and Sabharwal,

% Compilation

2023; Yang and Chiang, 2024), how to compile, decompile (Friedman et al., 2023).

12
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Conceptually: Model predications are logical propositions, Boolean

variables inside of formulas, weighted by prediction probability.



What do these programs tell us?

Model predicts loser ~ Model predicts winner
/

Implies(
) M(x,y1)s M(X,yw)

w(l(x,y)) = m(y | x)

Conceptually: Model predications are logical propositions, Boolean

variables inside of formulas, weighted by prediction probability.



What do these programs tell us?

Model predicts winner

Model predicts loser
/

. Whenever the model
Implles( deems the loser to be
M(X,y/),M(X,yW) — a valid generation, it
) should deem the winner
to be valid too.

Conceptually: Predictions are connected through Boolean operators,

express constraints on predictions; pg as formulas.

13



What do these programs tell us?

Model predicts winner

Model predicts loser
/

. Whenever the model
Implles( deems the loser to be
M(X,y/),M(X,yW) — a valid generation, it
) should deem the winner
to be valid too.

Assumption: Every loss function has an internal logic that can be

expressed in this way, we want to uncover that logic.
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What do these programs tell us?

Py(y| )
Implies(
M,y ) MOy ) A

Whenever the model deems valid

the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

yex”

Assumption: Every loss function has an internal logic that can be

expressed in this way, we want to uncover that logic.

14



What do these programs tell us?

P
Implies( o(yl=)

M(x, Y1 ) M(XyYw)

And( valid
MO Yw )
Not(M(x,y,)))

yex”

Assumption: Every loss function has an internal logic that can be

expressed in this way, we want to uncover that logic.

15



What do these programs tell us?

P
Implies( o(yl=)

M(x,y1 ), M(X,yw)

And( valid
M(X,yYw ),
Not(M(x,y,)))

yex”

Observation: The second program is more strict than the first, involves

semantic entailment.



What do these programs tell us?

Compilation
b P

Implies(

) M(X,y1 ), M(X,yw) _)

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

{(D,0) = —log Py(P | D,0)
—_—

probabilistic logic

16



What do these programs tell us?

p Compilation
tmplice( ¢D.9) = ~1og Py(P | D.0)
M0y ) MGoyn)  —— NEASR A
) probabilistic logic

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

What we did: defined a novel probabilistic logic for preference modeling,

note: logic useful not only for learning and loss.



What do these programs tell us?

P Decompilation

Implies(

) MOy ) M0GY)  e—— lepp = — Iogo(log fri((nylb)))

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.




What do these programs tell us?

Decompilation

P
Implies(
) MOy ) M0GY)  e—— lepp = — Iogo(log 7;66((};’VIV||)):))

Whenever the model deems
the loser to be a valid gen- €CPD(D7 9) = —log PQ(P ‘ D, 9)
eration, it should deem the

correctness property

winner to be valid too.

)
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What do these programs tell us?

Decompilation

P
Implies( oyl
Whenever the model deems
the loser to be a valid gen- €CPD(D7 9) = —log PQ(P ‘ D, 9)

eration, it should deem the
winner to be valid too. correctness property

The second thing we did: Defined a mechanical procedure for

decompilation, proved its correctness, invariance to choice of f.

16



lllustration of approach and results

Input Loss eoﬁpg

Oddso(yiw|x)
floga(log oad?g(yy,\:)>




lllustration of approach and results

Input Loss eogpg

Oddso(yiw|x)
floga(log oad?g(yy,\:)>

Py _ Polywlx)(1—Po(yilx))

5 Po(yilx)(1=Pa(ywx))

|

Core loss equation



lllustration of approach and results

Input Loss eogpg

Oddso(yiw|x)
floga(logioddzz(il‘:))

h)

25 Polywlx)(1=Po(ylx)) SEM(p5) = M(x, yw) A =M(x,y1)

b Po(yilx)(1—Po(ywlx)) SEM(/)g) = M(x, y1) A =M(X, yw)

>

Core loss equation Compositional translation



lllustration of approach and results

Input Loss Lorpo Preference structure P

M0Gyi)s M yw))

P:= Implies(
—logo ( log Ldsﬂmx))

Oddsg (y/|x) Pc := XOR(M(x,y1),M(yw)))
Py:=1
Py _ PolywlX)(1=Po(v|x)) SEM(ph) = M(%, yw) A M(x, 1)

5 Po(yilx)(1=Pa(ywx))

>

SEM(p§) = M(x, yi) A =M(x, yu)

Core loss equation Compositional translation



lllustration of approach and results

Thm.

compilation

Input Loss eoapg

decompilation

Preference structure P

P:= Implies(
M0 yi), M yw))

Oddso(yiw|x)
floga(log oadss:(yy,\:)>

h)

Py _ Po(ywl¥)(A=Po(yix))

Pc := XOR(M(x,y1),M(yw)))
Py:=1

SEM(p5) = M(x, yw) A =M(x,y1)

5 Po(yilx)(1=Pa(ywx))

>

Core loss equation

SEM(p§) = M(x, yi) A =M(x, yu)

Compositional translation
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lllustration of approach and results

Thm.

compilation decompilation

Input Loss Lorpo Preference structure P

M0Gyi)s M yw))

P:= Implies(
—logo ( log Oddse(yw\x)>

Oddsg(yi]x) Pc := XOR(M(x,y1),M(yw)))
Py:=1
Py _ Po(ywlx)(1=Po(yi|x)) SEM(p5) = M(x, yw) A —M(x,y1)

5 Po(yilx)(1=Pa(ywx))

>

SEM(p§) = M(x, yi) A =M(x, yu)

Core loss equation Compositional translation

P Preference structure, a core construct in our logic, encoding for

preference losses, has a natural Boolean interpretation.

17



question: Why is this useful to do?

17



How many preference loss functions are there?

(or How many future DPO papers might be written?)

17



Why is this useful? understanding the space

p)

Implies(
MOy ) M0 yw)

p(2)

And(
M(X1Yw),
Not(M(x,y/)))

Boolean functions, 2 variables

e
M(x, yw)  M(x,y/) SIONN-IE)

T T v X

T F v v

F T X X

F F v X

18



Why is this useful? understanding the space

p() Boolean functions, 2 variables

Implies( /
: MO, yi) MO Yw) M(x,yw) M(x,y,) [ PO PO
T T v X
p®) T F 7
And( F T X X
M(X,Yw ),
Not(M(x,y/))) i i L _

P Every program (in our logic) is pair of Boolean functions (in n variables),

corr. to v and X, leads to 4% possible loss functions.

18



Why is this useful? understanding the space

p() Boolean functions, 2 variables
Tmplies( . —
) e 1vw) 10y [POO_P0)
T T v X
P T F |l v v
And( F T X X
M(X1Yw),
Nox{(x,y1))) F F 1y X

no reference: 256 losses

P Every program (in our logic) is pair of Boolean functions (in n variables),

corr. to v and X, leads to 4% possible loss functions.

18



Loss functions as truth tables

Implies(
And(M(x,y/), Ref (X, yw ),
And(M(x,yw ),Ref(x,y/))

4 variables

Ref( 7YW) M(sz) Ref(x,y,) M(X7 YW)

X

e e B B B e B B M M B B e 2 i
e B B B B e e 3 B B B B B e s
Eon B B W B T e M B e B 3 e B B i B
b T e W B i B i s B B Bt e B B Bt |

w/ reference: 4,294,967,296 losses

19



answer: loads.

19



question: How are losses related to one another?

19



Why is this useful? understanding the structure

p() semantics: P(® = P(1)
Implies( (/
) e Hye) Gy [ PO PO
T T v X
P T F |l v v
And( F T X X
M(X,Yw )
not (4(x.:))) = F v X

Proposition (Xu et al., 2018): Loss behavior is monotonic w.r.t semantic
entailment: if P®® = PW then ¢(D,6,P®) > ¢(D,0,PW).



Why is this useful? understanding the structure

p() semantics: P(® = P(1)
Implies( (/
) e Hye) Gy [ PO PO
T T v X
P T F |l v v
And( F T X X
M(X,Yw )
not (4(x.:))) = F v X

Proposition (Xu et al., 2018): Loss is equivalent under semantic
equivalence: If P® = PW then ¢(D,6,P?) = ¢(D,0,PY).



Why is this useful? understanding the structure

p() semantics: P(® = P(1)
Implies( (/
) e Hye) Gy [ PO PO
T T v X
P T F |l v v
And( F T X X
M(X,Yw )
not (4(x.:))) = F v X

Theorem: ((D,0,P®) > ¢(D,0,PW) (the loss of P is contained in the
loss of P?).

20



answer: Losses are related through their semantics

20



Why is this useful? understanding the structure

p() semantics: P(® = P(1)
Implies( (/
) e Hye) Gy [ PO PO
T T v X
P T F |l v v
And( F T X X
M(X,Yw )
not (4(x.:))) = F v X

Practical strategy: Start with empirically successful losses, modify

semantics (make more or less constrained), then experiment accordingly.

20



questions: How does our logic work? What do we see?

20



How does the logic work? compilation

P
M(X, yw)  M(x,y/) CPO ORPO  unCPO Tmplies(
T T v X v p M(x,y1)s M(X,yw)
T F v v v
F T X X X \/ Whenever the model deems
F F v the loser to be a valid gen-

eration, it should deem the
winner to be valid too.
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How does the logic work? compilation

S() = TTw(v)- T1 1-w(v)

iEv

iE-v

P
M(X, yw)  M(x,y/) CPO ORPO  unCPO Tmplies(
T T v X ol MGy M(xyw)
T F v v v
F T X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-
/ eration, it should deem the

winner to be valid too.
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How does the logic work? compilation

P
M(X, yw)  M(x,y/) CPO ORPO  unCPO Tmplies(
T T v X ol MGy M(xyw)
T F v v v

F T X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-
/ eration, it should deem the

S() =TI w(v)- ] 1—w(v) winner to be valid too.

iEv iE-v

P Formula probability computed as a weighted count Y v (Chavira and
Darwiche, 2008), loss is — log (Xu et al., 2018); generalizing:

—log Po(Px) := — Ioga(logg ; )

symmetric to DPA, pg
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How does the logic work? compilation

P
M(X, yw)  M(x,y/) CPO ORPO | unCPO Tmplies(
T T v X ol MGy M(xyw)
T F v v v

F T X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-
/ eration, it should deem the

S() =TI w(v)- ] 1—w(v) winner to be valid too.

iEv iE-v

P Formula probability computed as a weighted count Y v (Chavira and
Darwiche, 2008), loss is — log (Xu et al., 2018); generalizing:

— log Py (Pogeo) = — '°g”(|°g g :< )

mo(yw | X)(1 = mo(yr | X))
mo(yi | x)(1 — mo(yw | x)

Lorpo, Pg(P|one hot)

= —Ioga(log

21



How does the logic work? compilation

P
M(X, yw)  M(x,y/) CPO ORPO  unCPO Tmplies(
T T v X ol MGy M(xyw)
T F v v v

F T X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-
/ eration, it should deem the

S() =TI w(v)- ] 1—w(v) winner to be valid too.

iEv iE-v

P Formula probability computed as a weighted count Y v (Chavira and
Darwiche, 2008), loss is — log (Xu et al., 2018); generalizing:

—log Po(Pcpo) := — Ioga(log g ; )

7o (Yw | X))

= —| |
°g"( A )

Lcpg, ~Pg(P|one true)

21



observation: losses differ in conditioning constraints

21



How does the logic work? compilation

P
M(X, yw)  M(x,y/) CPO ORPO  unCPO Tmplies(
T T v X ol MGy, MGxivw)
T F v v v
i U X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-

eration, it should deem the
winner to be valid too.

iE-v
Loss Representation P

CE P := M(x,yw), Pc:= L

CEUnL | P:= And(M(xyw), Not(M(x,y1)))
PC =1

CPO ;3 core semantic formula
P := Implies(M(x,y1), M(X,yw))
; one—true constraint
Pc := 0rM(x,y1), M(X,Yw))

ORPO

P := Implies(M(xy1).M(X.yw))
;3 one—hot constraint
Pc := XORM(x,y1), M(X,yw))

21



How does the logic work? compilation

P
M(X, yw)  M(x,y/) CPO ORPO |unCPO Tmplies(
T T v X ap M(x,y1), M(x,yw)
T F v v v
F T X X X V.| Whenever the model deems
F 7\ F v the loser to be a valid gen-
/ eration, it should deem the
S() =TI w(v)- ] 1—w(v) winner to be valid too.
iEv iE-v

P Formula probability computed as a weighted count Y v (Chavira and
Darwiche, 2008), loss is — log (Xu et al., 2018); generalizing:

-t ) =t (1 22 )

= Iog0(|og mo(yr | X)mo(yw | X) + (1 = mo(y | X)))

mo(yi | x)(1 — 7o (yw | X))

novel loss

21



note: M(x,y;) = M(x,y,) = —M(x,y;) VM(X, yw)

21



The no reference loss landscape

M(x, yw) A —M(x, y;) —M(x,yr)

VCEUnl v }—'—ﬁ l120 T—
| Y Leun1
N

Ly
M(X, yw) CE e M(x,yr) = M(X, yw)

most constrained % least constrained



The no reference loss landscape

M(x, yw) A =M(x, y1) —M(x, Y1)
Leguny v
ESCE
M(x, Yw) leg v 0%, 1) = M(x, yw)
most constrained % least constrained
Winner logprob Loser logprob

uncPO
o4 cpo
cfUNL
cCPO

-8 "
o 200 400 600 800 1000 o 200 400 600 800 1000 -10 -8 6 -4 -2 o -10 -8 -6 -4 -2 = 0
Training step Training step Winner logprob (validation) Loser logprob (validation)
Training dynamics Inference

22



question: Are any of these losses good?

22



Adding a reference model

P:= Implies(
And(M(x,y;),Ref(x,yw)),
And(M(x,yw ), Ref (x,y/))

Whenever the model being
tuned deems the loser to
be a valid generation and
the reference model deems
— the winner to be valid, the
tuned model should deem
the winner to be valid too,

)

and the reference should
deem the loser to be valid.

23



Adding a reference model

Whenever the model being
tuned deems the loser to
P:= Implies( be a valid generation and
And(M(X VYi ), R.ef(x Yw )), the reference model deems
— the winner to be valid, the
And(M(X'YW )’ Ref(x,y/)) tuned model should deem
) the winner to be valid too,
and the reference should
deem the loser to be valid.

P Peculiar semantics, but the logic makes sense, e.g., we want to maximize

a( jog T0Ww 1) _ Tl | x))

mo(yi | x) ety | x)

negating left side of implication (i.e., making M(x,y/) and Ref(x,yw)
false) and making the right side true is logical.

23



The full landscape, reference approaches

(X, yw) A =M(x, 1) —M(x,yr) M(x, y1) = M(%, Yw)
Ref (X, yw) Ref(x, yw) A (M(x, y/) V =Ref(x,y/)) Ref (%, yw) A (M(x,y;) V ~Ref(x,y;))
= M(x, yw) A =M(x, ) = M(x, yw) A =M(x, ) = M(x, yw)

[cevn v [71

M(x, yw)

Ref (X, yw) A (—M(X, yw) V —Ref(x,y/))
= M(x, yw) A =M(x, )

Ref (%, yw) = M(x, yw)

Ref (x, yw) A (M(x, y1) V ~Re£(x, v)))

A(=M(%, yw) V —Ref(x, y1))
= M(x, yw) A M(x, y/)

M(x,yr) ARef(x,y
( —>)M(><,yw)Y &

Ref(x, yw) AM(x,ys)
— M(x,yw) ARe£(x,y;)
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The full landscape, reference approaches

(X, yw) A =M(x, 1) —M(x,yr) M(x, y1) = M(%, Yw)
Ref (X, yw) Ref(x, yw) A (M(x, y/) V =Ref(x,y/)) Ref (%, yw) A (M(x,y;) V ~Ref(x,y;))
= M(x, yw) A =M(x, ) = M(x, yw) A =M(x, ) = M(x, yw)

[cevn v [71

M(x, yw)

Ref(x,yw) A (M(x,y;) V ~Ref(x,y;))
Ref(x, yw) A (<M(x, yw) V —Re (x,y/)) A(=M(%, yw) V —Ref(x, y1))
= M(x, yw) A =M(x, ) Ref (X, yw) = M(x,yw) || = M(x,yw) A —M(x,y/)

M(x,yr) ARef(x,y
( —>)M(><,yw)Y &

Ref(x, yw) AM(x,ys)
— M(x,yw) ARe£(x,y;)

P> Many new losses to explore and experiment with!

24



Conclusions

P New ideas about formalizing preference loss functions using symbolic

techniques, developed new technical tools for this.
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Conclusions

P New ideas about formalizing preference loss functions using symbolic

techniques, developed new technical tools for this.

1. Understanding the full space of loss functions (finding: it's a huge
space, many novel variations yet to be explored)

2. Understanding the structure of the space and relationships between
different losses (finding: tied to the semantics of the losses).
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Conclusions

P New ideas about formalizing preference loss functions using symbolic

techniques, developed new technical tools for this.
1. Understanding the full space of loss functions (finding: it's a huge
space, many novel variations yet to be explored)

2. Understanding the structure of the space and relationships between
different losses (finding: tied to the semantics of the losses).

The procedure: write a (high-level) symbolic program, or modify an
existing one, compile into a loss and experiment (then repeat)

25



Thank you.
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