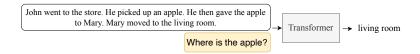
Breakpoint Transformers for Modeling and Tracking Intermediate Beliefs

Kyle Richardson^{1,*}, **Ronen Tamari**^{2,*}, Oren Sultan², Reut Tsarfaty³, Dafna Shahaf², Ashish Sabharwal¹

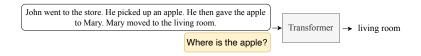
Allen Institute for Al¹, Hebrew University of Jerusalem², Bar-Ilan University³

*equal contribution

EMNLP 2022

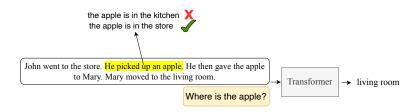


Narrative Understanding

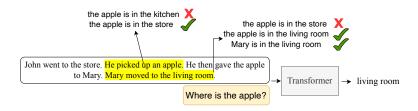

John went to the store. He picked up an apple. He then gave the apple to Mary. Mary moved to the living room.

Where is the apple?

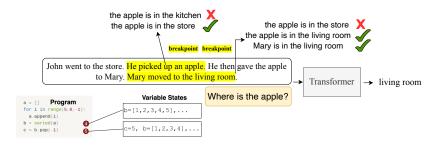
Narrative Understanding



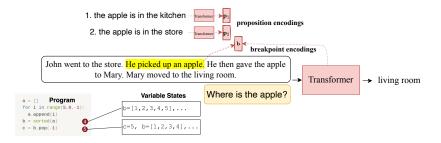
Narrative Understanding


Desiderata: Examining and tracking beliefs of models at arbitrary points in texts, posing textual queries.

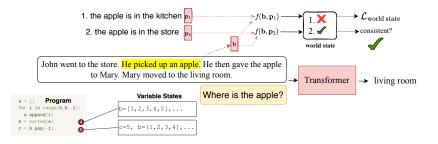
Narrative Understanding


Desiderata: Examining and tracking beliefs of models at arbitrary points in texts, posing textual queries.

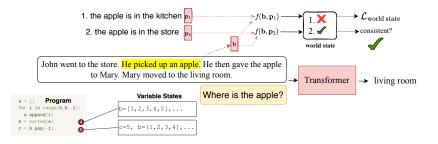
Narrative Understanding


Desiderata: Examining and tracking beliefs of models at arbitrary points in texts, posing textual queries.

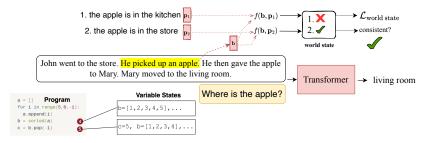
Narrative Understanding


Why: Reasoning about correctness of model behavior, track information change through time, find errors.

Narrative Understanding

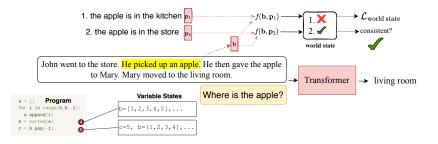

Breakpoint Models: representation learning framework, modeling intermediate states, constructing world state representations.

Narrative Understanding

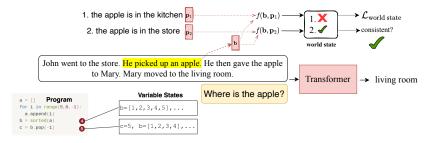

Breakpoint Models: representation learning framework, modeling intermediate states, constructing world state representations.

Narrative Understanding

Breakpoint Models: representation learning framework, modeling intermediate states, constructing world state representations.


Narrative Understanding

New belief prediction tasks, breakpoint transformer based on T5.


Task	Example Stories	Breakpoint Propositions
Relational	John is the brother of Susan [B]1 Susan's mother	P1: { 'Susan is the sister of John' true, 'Susan is the sister-in-law of Janice'
Reasoning	is Janice [B]2,	false, 'Janice is the mother of John' unk }
(CLUTRR)		P2: { 'Janice is the mother of John' true, 'John is the father of Janice' false,}
Story	John moved to the kitchen [B]1 He picked up	P1 :{ 'John has the apple' false, 'John is in the kitchen' true,}
Understanding	an apple [B]2 John then gave the apple to Mary	P2: { 'John has the apple' true, 'John is in the kitchen'}
(bAbI)	[B] ₃	P ₃ : { 'John has the apple' false, 'Mary has the apple' true }
Commonsense	Tom dropped his radiocarpet. [B]1 The radio	P2: { 'radio is in pieces' true, 'radio is powered' false},
(TRIP)	broke [B]2 Tom turned on the radio [B]3	P ₃ : { 'radio was powered' true }

Narrative Understanding

Findings: Improved performance over conventional learning approaches, SOTA on TRIP task, joint training with existing tasks (QA).

Narrative Understanding

Please come to our poster to learn more.