
4 Learning from Entailment for
Semantic Parsing

“The basic aim of semantics is to characterize the notion of a true sen-
tence (under a given interpretation) and of entailment.”

– Richard Montague, Universal Grammar (1970)

4.1 Modeling Entailment for Semantic Parsing

4.1.1 The Idea

Throughout this thesis, we have treated semantic parsing as primarily a translation
problem, which we have studied independently of the other subtasks (i.e., knowl-
edge representation and symbolic reasoning) associated with the general NLU pro-
gram outlined in Chapter 1. It is worth bearing in mind, however, that the ultimate
goal, as described in the quote above by Montague, is to generate formal meaning
representations that capture facts about truth and entailment and facilitate deep
symbolic reasoning. In this chapter, we examine the following question: do the for-
mal representations being learned for semantic parsing actually help us to model
entailment, and if not, how can we learn representations that do?

To illustrate this idea, Figure 4.1 shows a variant of the pipeline model intro-
duced in Chapter 1 that includes the following sentence (in red) that is logically
entailed by the first sentence (for details about entailment, see Appendix C):

Find some sample that contains a major element. (4.1)

A consequence of this logical entailment is that the denotation of the second sen-
tence (i.e., the set of answers that make this sentence true) should always be a
subset of the denotation of the first sentence, regardless of the target dataset or
knowledge source being used. Linguists in the Montague tradition have long used

107

4 Learning from Entailment for Semantic Parsing

input sem

Find all samples that
contain a major element

æ
Find some sample that
contains a major element

database

JsemK ={S10019,S10059,...} ´ {S10019}

1. Semantic Parsing

3. Reasoning

(FOR EVERY X /
MAJORELT : T;
(FOR EVERY Y /
SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

2. Knowledge Representation

Figure 4.1: The global NLU picture with entailment.

judgements about entailment as the main tool for motivating and evaluating dif-
ferent theories of semantics. Using an analogy with programming and software, we
can think about tests of entailment in semantics as a kind of unit test for system
development, as described below:

• Entailment as a Unit Test: For a set of target sentences, check that our
semantic model accounts for particular entailment patterns observed between
pairs of sentences; modify our model when such tests fail.

The question investigated here is: what happens when we subject our semantic
parsers to such a unit test? In doing this, we adopt the loose definition of entailment
used in the recognizing textual entailment challenges (RTE), where entailment is
defined in terms of the following task (Dagan et al., 2005): given a text t and
hypothesis h, determine if h is entailed by t where say that t entails h if a
human reading t would typically infer that h is most likely true. Figure 4.2 shows
example sentence pairs and logical forms (or LFs, generated by a semantic parser)
from the Sportscaster corpus (Chen and Mooney, 2008a) already encountered in

108

4.1 Modeling Entailment for Semantic Parsing

Entailments
Text t and gold LF Hypothesis h and gold LF Human Näıve

1. Pink 3 quickly kicks to Pink 7
pass(pink3,pink7)

Pink 3 kicks over to Pink 7
pass(pink3,pink7)

t (entail) h

h (uncertain) t

entail

2. Purple 10 kicks the ball
kick(purple10)

Purple 10 shoots for the goal
kick(purple10)

t (uncertain) h

h (entail) t

entail

3. Pink 10 kicks the ball
kick(pick10)

Pink 10 passes over to Pink 7
pass(pink10,pink7)

t (uncertain) h

h (entail) t

contr.

4. Pink 7 makes a long kick
kick(purple7)

Purple team scores another goal
playmode(goal l)

t (uncertain) h

h (uncertain) t

contr.

Figure 4.2: Example sentence pairs and entailments in the Sportscaster domain.

Chapter 3. Each example is marked with an entailment judgement provided by
humans in both the t æ h and h æ t directions. For example, in Figure 4.2-1, we
can paraphrase the entailment from t æ h in the following way:

In all scenarios (e.g., possible game events) in which ‘pink 3 quickly
kicks to pink 7’ is true, it is always simultaneously true (or nearly
always true) that ‘pink 3 kicks over to pink 7’

Subjecting our semantic parsers to an RTE test involves seeing if the semantic LF
representations being generated can be used to derive and identify such correct
entailments (i.e., entailments that are consistent with human judgements).

4.1.2 Yet Another Resource Problem!

The problem with the corpus LFs in Figure 4.2, however, is that while they capture
the general events being discussed, they often fail to capture other aspects of
meaning. Here, the näıve judgement is the entailment generated by comparing
the LFs associated with t and h (i.e., by assigning entail when the LFs match,
and contradict when they mismatch), which captures the full inferential power
of the target LFs. In several cases, the näıve inferences result in judgements that
are inconsistent with the human judgements. Therefore, some of the semantic
representations provided in the corpus fail to pass the test described above.

In considering these examples, we identify the following two issues:

109

4 Learning from Entailment for Semantic Parsing

1. Imprecise Corpus Representations: The corpus representations fail to
account for certain aspects of meaning. For example, the first two sen-
tences in Figure 4.2-1 map to the same formal meaning representation (i.e.,
pass(pink3,pink7)) despite having slightly di�erent semantics and diver-
gent entailment patterns. This shift in meaning is related to the adverbial
modifier quickly, which is not explicitly analyzed in the target representation.
The same is true for the modifier long in example 4, and for all other forms of
modification. For a semantic parser or generator trained on this data, both
sentences in 1 are treated as having an identical meaning.

As shown in the example 2, other representations fail to capture important
sense distinctions, such as the di�erence between the two senses of the kick
relation. While shooting for the goal in general entails kicking, such an entail-
ment does not hold in the reverse direction. Without making this distinction
explicit at the representation level, such inferences and distinctions cannot
be made.

2. Missing Domain Knowledge Since the logical representations are not
based on an underlying logical theory or domain ontology, semantic rela-
tions between di�erent symbols are not known. For example, computing the
entailments in example 3 requires knowing that in general, a pass event
entails or implies a kick event (i.e., the set of things kicking at a given mo-
ment includes the set of things passing). Other such factoids are involved in
reasoning about the sentences in example 4: purple7 is part of the purple
team, and a score event usually entails a kick event (but not conversely).

The more general resource problem involved here can be described in the follow-
ing way: while we have a su�cient amount of parallel data for training a semantic
parser in a given domain (thus solving the initial resource problems discussed in
Sections 2.1.2 and 3.1.2), the gold LFs provided in the corpus are deficient and not
able to capture the full range of NLU phenomena. Recalling our setup from Chap-
ter 1, as shown again in Figure 4.3, this issue also touches on the shortcomings of
how we evaluate our semantic parsing models.

One common way to deal with such resource problems is to re-annotate the cor-
pus representations and the relevant background knowledge (Toledo et al., 2013).

110

4.1 Modeling Entailment for Semantic Parsing

Training
challenge 2:
Missing data?

challenge 3:
Deficient LFs?

Parallel Training Set
D =

)
(x(d)

, z(d))
*|D|

d=1
Machine Learner/Estimation

Testing

input Semantic Parsing sem

x decoding
(Finding the best z)

z

world
reasoning

model

Downstream Evaluation?

Figure 4.3: The standard semantic parsing setup and the third resource challenge
(from Section 1.3).

We instead investigate whether this missing information can be learned, in particu-
lar by using example entailment judgements as a weak form of training supervision,
which is a new learning framework that we call learning from entailment. Similar
to the idea of learning from denotation in semantic parsing (Clarke et al., 2010;
Liang et al., 2013; Berant et al., 2013), the intuition behind learning from entail-
ment is that entailments give general information about denotations (i.e., the set
of possible scenarios associated with entities and events), and that asymmetries in
entailment judgements can be used for finding holes in the target representations
and learning better representations. For example, given the mismatch in the entail-
ments in Figure 4.2-1, one can infer that t has more specific information than h (or
that its denotation is a subset of the denotations of h), which then requires learn-
ing a model that can identify this additional information and ultimately derive the
semantics of this missing information.

To experiment with this idea, we introduce a new semantic parsing model that
learns jointly using structured meaning representations (as done in previous ap-

111

4 Learning from Entailment for Semantic Parsing

proaches) and raw textual inference judgements between random pairs of sentences.
In order to learn and model entailment phenomena, our model integrates natural
logic (symbolic) reasoning (MacCartney and Manning, 2009) directly into our se-
mantic learner. We perform experiments on the Sportscaster corpus (Chen and
Mooney, 2008a), which we extend by annotating pairs of training sentences in the
original dataset with inference judgements. On a new RTE-style inference task
based on this extended dataset, we achieve an accuracy of 73%, which is an im-
provement of 13 percentage points over a strong baselines. As a separate result,
part of our approach outperforms previously published results (from around 89%
accuracy to 96%) on the original Sportscaster semantic parsing task.

4.2 Related Work
As reviewed in the last several chapters, work in semantic parsing has focused on
learning semantic parsers from parallel data, often in the form of raw collections of
text-meaning pairs. The earliest attempts (Kate et al., 2005; Wong and Mooney,
2006; Zettlemoyer and Collins, 2009) focused on learning to map natural language
questions to simple database queries for database retrieval using collections of
target questions and formal queries (e.g., in the GeoQuery domain studied in the
last chapter). A more recent focus has been on learning representations using
weaker forms of supervision that require minimal amounts of manual annotation
e�ort (Clarke et al., 2010; Liang et al., 2011; Krishnamurthy and Mitchell, 2012;
Artzi and Zettlemoyer, 2013; Berant et al., 2013), which includes work on learning
from denotation (see Liang and Potts (2015); Liang (2016)).

Most work done on learning from denotation, and indeed in semantic parser
induction more generally, has centered around question-answering (QA) applica-
tions. For example, Liang et al. (2011); Berant et al. (2013) train semantic parsers
in QA domains using the denotations (or answers, represented as discrete sym-
bolic entities) of each question as the primary supervision. One can regard this
approach as the simplest form of learning from entailment; given a fixed database
(or a model of all known scenarios) and symbolic representations of all answers,
the aim is to learn a semantic parser given information that that each question is
entailed by its associated answer. Under this scenario, however, entailment is lim-

112

4.3 Problem Description and Approach

ited to entailments between questions and simple answers (often existential values
of some kind), and does not involve entailments that involve abstract relations
between generic events and predicates, as we consider in this work. In general,
entailment and symbolic reasoning has played a marginal role in existing work in
semantic parsing, perhaps largely due to the primary focus on simple QA.

One inherent di�culty in modeling entailment (especially in RTE settings) and
learning more complex semantic parsing representations is the need for consider-
able amounts of background knowledge (LoBue and Yates, 2011; Clark, 2018). At-
tempts to integrate more general knowledge into semantic parsing pipelines have of-
ten involved additional hand-engineering or external lexical resources (Wang et al.,
2014; Tian et al., 2014; Beltagy et al., 2014). As discussed above, our approach
looks at learning background knowledge indirectly from scratch by optimizing our
models to predict the correct entailments, which to our knowledge has not been
done before in semantic parsing work.

4.3 Problem Description and Approach
In this section, we given a high-level description of the original Sportscaster se-
mantic parsing task and our approach to learning from entailment. While we define
each task separately, we train our semantic parsing models jointly and in an end-
to-end fashion using a grammar-based approach. A key technical innovation in our
approach is the integration of formal symbolic reasoning into our semantic parsing
model, which we describe in the next section and sketch out in Section 4.3.2.

4.3.1 The Sportscaster Task

Figure 4.4 shows a training example from the original Sportscaster corpus, con-
sisting of a text about a sports event x paired with a set of formal meaning
representations Z. In this case, each text was collected by having human partic-
ipants watch a 2-d simulation of several Robocup soccer league games (Kitano
et al., 1997) and comment on events in the game. Rather than hand annotating
the associated logical forms, sentences were paired with symbolic renderings of
the underlying simulator actions that occurred around the time of each comment.

113

4 Learning from Entailment for Semantic Parsing

x: pink3 quickly kicks to pink7

y: (latent)

Z:
I

pass(pink3 pink7),...
J

JZK 2

3

4

1

6

7

8

9

10

11
4

2

3

1

5
67

8

9
10

Figure 4.4: The original Sportscaster training setup.

These representations therefore serve as a proxy for the denotation of the event
context and the individual events (shown as JZK).

The goal is to learn a semantic parser sp given a training set D consisting
of example sports descriptions and LFs, D = {(x(d), Z(d))}|D|

d=1, that can translate
unseen descriptions to the correct LFs, as expressed below:

sp : description æ LF (z) (4.2)

In contrast to other work on learning from logical forms (e.g., in Chapter 2), the
learning problem in this case is harder since the training data contains sets of
possible LFs, as opposed to only gold LFs, which requires learning from ambiguous
supervision (Mooney, 2008). The underlying idea is that these ambiguous contexts
simulate the broader perceptual context associated with each comment, and hence
provide a more realistic learning scenario.

The provided LFs (see examples in Figure 4.2) are expressed as atomic formu-
las in predicate logic defined over a small set of domain-specific predicates (e.g.,
kick, pass, block) and terms (e.g., pink team, pink1, purple11). While our pri-
mary semantic parsing model generates exactly the representations provided in
the original corpus, we reinterpret the semantics of these formulas in a way that it

114

4.3 Problem Description and Approach

input: (t,h) t pink3 ⁄ passes to pink1
a

h pink3 quickly kicks ⁄

y
pink3 © pink3

assert
pink3 © pink3

⁄ ˆ ı
c

assert
⁄ ˆ quickly

pass ı kickassert pink1 ı ⁄
infer.

passes to pink1 ı kicks
infer.

passes to pink 1 # quickly kicks
infer.

pink3 passes to pink1 # pink3 quickly kicks

EI Z
Ó

uncertain
Ô

world

pink3/pink3

⁄/ˆc

pass/kick

pink1/⁄

Figure 4.5: An example of learning from entailment.

makes it easier to model entailment. Specifically, terms are interpreted as separate
predicates and the original event predicates are interpreted in a Neo-Davidsonian
fashion (Parsons, 1990), as in the following example:

Jpass(pink3,pink7)K = ÷e.÷x.÷y.pass(e) · pink3(x) · pink7(y)

· arg1(x,e) · arg2(y,e)

where the terms pink3 and pink7 are treated as separate predicates (which makes
it easier to model abstract relationships such as Jpink1K µ Jpink teamK) and event
predicates and predicate argument information apply over event variables e (in the
first case, making it easier to model relationships such as JpassK µ JkickK).

4.3.2 Learning from Entailment

The problem with the approach described above, as discussed in Section 4.1.2, is
that the representations being learned do not always capture the types of informa-
tion needed for modeling entailment. The general idea of learning from entailment
is to extend a given semantic parsing dataset D with pairs of training sentences

115

4 Learning from Entailment for Semantic Parsing

annotated with inference judgements (as shown in Figure 4.2). While training an
ordinary semantic parser sp, we then use such pairs to train a model infer that
can generate certain types of entailments from example pairs of descriptions, as
shown below:

infer :
1
description1 = t, description2 = h

2
æ entailment (z) (4.3)

where entailments can be of the following three types (Cooper et al., 1996; Ben-
tivogli et al., 2011): {entail, contradict, uncertain/compatible}. The ap-
proach pursued here involves integrating a logical reasoning system into our se-
mantic parser that can reason about the target symbols being learned and prove
theorems about the target entailments. The key idea is that the resulting proofs
reveal distinctions not captured in the original representations, and can be used
to improve the semantic parser’s internal representations and acquire knowledge.

An illustration of this is shown in Figure 4.5, where the input consists of a
text t and hypothesis h, and and a set of entailment judgements Z (in this case,
a single uncertain judgement, which we represent using the variable z, as with
LFs). y shows an example proof, or explanation, of how the model arrives at an
uncertain inference based on a set of local inferences about relationships between
aligned (via a) parts of t and h. For example, the model reasons that pass to pink1
entails kicks (based on some assertion or axiom between pass and kick), whereas
uncertainty is introduced with the modifier quickly in the hypothesis and passes
to pink1 and quickly kicks; this uncertainty then propagates up the proof using
generic inference rules infer defined in the model (to be described in Section 4.4.2).
Since example proofs are not provided at training time, the learning problem is to
find the correct proofs within a large latent space of possible proofs.

This particular proof gives rise to several new assertions or facts: the pass
symbol is found to forward entail or imply (shown using the set inclusion symbol ı)
the kick symbol. The adverbial modifier, which is previously unanalyzed, is treated
as an entailing modifier ı

c

, which results in a reverse entailment or implication
(shown using the symbol ˆ) when inserted (or substituted for the empty symbol ⁄)
on the hypothesis side. The first fact can be used for building a domain theory, and
the second for assigning more precise labels to modifiers in the semantic parser.

116

4.4 Grammar-based Semantic Parsing

In the latter case, we might assign the following improved representation to the
input pink3 quickly kicks (using the semantics described in the previous section):

÷e.÷x.kick(e) · quickly(e) · pink3(x) · arg1(x, e)

in which we have a new predicate quickly derived from its use as a forward
entailing modifier in the example proof.

Computing entailments in our approach is specifically driven by learning the
correct semantic assertions between primitive domain symbols, as well as the se-
mantic e�ect of deleting/inserting symbols. We focus on learning the following
very broad types of linguistic inferences (Fyodorov et al., 2003):

• construction-based: inferences generated from specific (syntactic) con-
structions or lexical items in the language

• lexical-based: inferences generated between words or primitive concepts
due to their inherent lexical meaning

Construction-based inferences are inferences related to modifier constructions:
quickly(pass) ı pass, goal ˆ nice(goal), gets a(free kick) © (equivalence)
free kick, where the entailments relate to default properties of particular mod-
ifiers when they are added or dropped. Lexical-based inferences relate to general
inferences and implications between primitive semantic symbols or concepts: kick
ˆ score, pass ı kick, and pink1 ı pink team.

4.4 Grammar-based Semantic Parsing
To model sp and infer, we use a grammar-based approach based on probabilistic
context-free grammars (PCFG). In both cases, the target model assigns to each
input a tree structured representation corresponding either to an LF representa-
tion or an entailment z. Grammar models build such structures using a finite set
of (probabilistic) rewrite rules, which are created via a rule extraction process de-
fined over the target parallel data described in the previous sections (as illustrated
in Figure 4.6). In this section, we discuss the general PCFG formalism and ex-
plain its use in semantic parsing, then describe our rule extraction procedure (Sec-

117

4 Learning from Entailment for Semantic Parsing

3
x : purple 10 quickly kicks, Z :

)
kick(purple10), block(purple7),...

*4

¿ (rule extraction æ grammar)

y1X y2X y3◊ y4◊
Rep

in transitive

kick
c

kick
w

kicks

⁄
c

quickly

arg1

purple10
c

purple10
w

purple 10

Rep

arg1◊

purple10
c

purple10
w

kicks

⁄
c

quickly

in transitive◊

kick
c

kick
w

purple 10

Rep

in transitive

block
c

block
w

kicks

⁄
c

quickly

arg1

purple7
c

purple7
w

purple 10

Rep

in transitive

block
c

block
w

kicks

block
w

quickly

arg1

purple9
c

purple9
w

purple 10

Jy1KG=kick(purple10) Jy2KG=kick(purple10) Jy3KG=block(purple7) Jy4KG=block(purple9)

Figure 4.6: Semantic grammar rule extraction and example derivations.

tion 4.4.1) and the integration of logical reasoning into this model (Section 4.4.2).
In Section 4.4.3 we finish by describing how we estimate our models from parallel
data using a simple EM bootstrapping approach.

Modeling Preliminaries: Translating with PCFGs

Formally, a PCFG defines a 5-tuple G
◊

= (�, N, S, R, ◊) consisting of a set of
terminal (i.e., source language) symbols �, a set of non-terminal grammar symbols
N , a start symbol S œ N , a set of rewrite rules R = {N æ — | — œ (N fi �)ú}
and a parameter vector ◊ œ R|R| (without ◊, this defines a CFG). Using ◊, each
rule N æ — (consisting of a left hand side (lhs) N and a right hand side (rhs) —)
is assigned a score ◊

Næ–

subject to the following constraints (where R
N

is used to
denote the set of rules from R that share the same lhs N):

’N æ — 0 Æ ◊
Næ—

Æ 1
’R

N

ÿ

(Næ–)œR

N

◊
Næ–

= 1

A derivation y over an input x is any application of rules that results in a tree
rooted by S such that yield of the tree (i.e., the sequence of terminal nodes in the
tree) is equal to x. For example, Figure 4.6 shows an example derivation y for the

118

4.4 Grammar-based Semantic Parsing

sentence purple 10 quickly kicks (shown below in a standard Lisp format):
(Rep

(arg1 (purple10
c

(purple10
w

purple 10)))
(in_transitive (⁄

c

quickly)
(kick

c

(kick
w

kicks))))

where rules include {Rep æ arg1in transitive, arg1 æ purple
c

, ...} ™ R with
the start node Rep, and the yield of the derivation is the left-to-right sequence of
terminal symbols purple 10 quickly kicks (i.e., the input sentence). Imagining that
probabilities are associated with rules, the score of this derivation y is computed
as a product over the individual rule probabilities N

j

æ —
j

in that derivation:

p
◊

(y) =
|y|Ÿ

i

◊
N

i

æ—

i

(4.4)

As a generative model, PCFGs can be used to model the joint distribution
p(x, y), which allows us to compute the probability of a given input x by marginal-
izing over all derivations over x, or Yx (where computing each joint probability
reduces to computing the probability of each derivation):

p(x) =
ÿ

yœYx

p(x, y) (4.5)

=
ÿ

yœYx

p
◊

(y) via Equation 4.4 (4.6)

Under this formulation, one natural application of PCFGs is language modeling,
or assigning scores (in this case, probabilities) to input sentences (Jurafsky et al.,
1995). For most NLP applications, however, it is not the probability of the string
that is of interest but rather the best derivation (or set of derivations) associated
with input, since the particular grammar rules in each derivation often contain
important details about linguistic structure.

The trick involved with using PCFGs for semantic parsing is that we associate
each derivation with a unique LF, as shown in Figure 4.6 (on the bottom of each
derivation). For example, in the derivation considered above, the interpretation of
this derivation, which we express as JyKG (see Section 4.4.1 for more details about

119

4 Learning from Entailment for Semantic Parsing

Algorithm 8 CKY Recognition Algorithm
Input: CFG G in Chomsky Normal Form, input x = (x1, .., x|x|), start symbol S

Output: True if x is accepted, False otherwise
1: T Ω ÿ Û Initialize chart data structure
2: for j from 1 up to | x | do
3: for all terminal rules A æ – œ G

R

do Û Search for terminal rule matches
4: if rule is A æ x

j

then
5: T Ω T + [j ≠ 1, A, j]
6: for i from j ≠ 2 down to 0 do Û Search for binary rule matches
7: for k from i + 1 to j ≠ 1 do
8: for all binary rules A æ BC œ G

R

do
9: if [i, B, k] and [k, C, j] œ T then

10: T Ω T + [i, A, j]
11: return [0, S, |x|] œ T

how this interpretation is computed), is the following LF:

z = kick(purple10)

In doing this, we can then define a conditional distribution over LF outputs z (or
entailments when modeling entailment) given inputs x, as in the following:

p
◊

(z | x) Ã
ÿ

yœYx | JyKG=z
p

◊

(y) (4.7)

which allows us in e�ect to use the PCFG as a special kind of constrained transla-
tion model (with which we can model weighted relations between natural languages
and semantic languages as first discussed in Section 1.2).

One inherent di�culty with PCFGs and the computations described above is
that the space of derivations Yx can be exponential over the size of each input x
(this is similar to the issue of computing all alignments in the translation models
from Section 2.3.1). Often these issues can be overcome by applying standard
dynamic programming techniques (as described in the next section), however not
all such techniques can be applied when using our model in the manner described
above for semantic parsing, as we discuss next.

120

4.4 Grammar-based Semantic Parsing

16

[0, Rep, 4]

12[0, arg1, 2] 13 [2, in tran.1, 4] 14 [0, in tr., 2] 15 [2, arg1, 4]

6[0, purple10
c

, 2] 8
[3, kick

c

, 4]

7
[2, ⁄

c

, 3]

9 [0, kick
c

, 2] 11 [3, purple10
c

, 4]

1[0, purple 10, 2]

3[2, quickly, 3]

5 [3, kicks, 4]

0

Figure 4.7: An acyclic hypergraph representation of the first two derivations in
Figure 4.6, with the shortest path (or tree) shown in bold.

Recognition and Decoding Given a generic PCFG G
◊

and an input x, the
decoding problem involves finding the most probable derivation yú associated with
the input, as expressed below:

yú = arg max
yœYx

Ó
p(y | x)

Ô
(4.8)

which can be reformulated in the following way via the decoding rule (Smith, 2011),
which is based on the fact that p(x) remains fixed for each candidate y:

yú = arg max
yœYx

Ó
p(y | x)

Ô
Eq. 4.8

= arg max
yœYx

Óp(x, y)
p(x)

Ô
Definition

= arg max
yœYx

Ó
p(x, y)

Ô
constant p(x)

121

4 Learning from Entailment for Semantic Parsing

Algorithm 9 Directed Acyclic Hypergraph (DAH) Shortest-Path Search
Input: DAH H, edge labels parameters ◊ (probabilities, e.g., grammar rule parameters)
Output: Shortest hyperpath
1: d[V [H]] Ω Œ Û Standard initialization (i.e., for DAG SSSP)
2: fi[V [H]] Ω Nil

3: d[0] Ω 0
4: for each node v œ V [H] in sorted order do
5: for each hyperedge e =

!
{u1, u2, ..., u|e|}, v, l

"
œ BS(v) do

6: score Ω ≠ log(◊
l

) +
q|e|

i

d[u
i

] Û hyperedge score computation via ◊

7: if d[v] > score then Û Standard relaxation step
8: d[v] Ω score
9: fi[v] Ω e

10: return FindPath(fi, | V |, 0) Û Backtrace to find shortest hyperpath

Again, the di�culty here involves e�ciently computing all the derivations in Yx.
One way do this is to use a variant of the CKY algorithm shown in Algorithm 8
(Kasami, 1965; Nederhof and Satta, 2010). As presented, the CKY solves the more
fundamental problem of recognition, or determining if an input string x is in the
language defined by a CFG, which similarly involves searching through all possible
derivations. This is done e�ciently by using a chart data structure T and dynamic
programming to e�ciently search and store all applications of rules in intermediate
derivations (lines 4 and 9, see Manning and Schütze (1999) for more details).

The chart data structure T that results from the CKY search can be interpreted
as a special type of directed graph called a directed hypergraph (Gallo et al., 1993),
which extends ordinary directed graphs by allowing edges to connect to multiple
nodes. In the parsing case, nodes are associated with particular rule applications
(i.e., each [i, R, j] from lines 5 and 10 in Algorithm 8) and edges are associated with
production rules, as shown in Figure 4.7. With this graph, one can then do decoding
by extending the shortest path algorithms for directed graphs (Section 3.4) to
hypergraphs (Knuth, 1977; Klein and Manning, 2004; Huang, 2008).

Formally, a directed hypergraph H = (V, E) consists of a set of nodes V and
directed hyperedges E, where each hyperedge e takes the following form (see Huang

122

4.4 Grammar-based Semantic Parsing

(2008) for a more general overview and notation):

e =
1
{u1, u2, ..., u|e|}, v, l

2

and consists of a set of tail nodes t(e) = {u1, .., u|e|} ™ V , a head node h(e) = v œ V

and (for convenience) a label l. In the case of the CKY algorithm, the hypergraph
that is generated is an acyclic directed hypergraph, which has the property (as with
DAGs) that nodes can be sorted into numerical (topological) order. The associated
shortest path algorithm, therefore, is nearly identical to the one for DAGs (see
Algorithm 4), and is shown in Algorithm 9 (where BS(v) = {e œ E | h(e) = v}1

and in the parsing case, labels are used to identify grammar rules R associated
with each e). The shortest path (or best derivation tree) can then be constructed
by moving backwards (via the FindPath routine) from the final node (or the start
node S) to the source node using the predecessor fi.

Returning to the use of our PCFG as a semantic parser, the decoding problem
(i.e., finding the best LF or entailment zú given x) can be described in the following

zú = arg max
z

Ó
p

◊

(z | x)
Ô

(4.9)

and is at first glance more di�cult than Equation 4.8 given that computing this
requires finding all valid derivations {y | z = JyKG} as per Equation 4.7. The prob-
lem is that computing each valid derivation often requires a non-local combination
of rules in the target tree, which cannot be accomplished using dynamic program-
ming. For example, computing the LF kick(purple10) from the first derivation
tree in Figure 4.6 requires combining information from the two subtrees rooted by
purple10

c

and kick
c

, which are not adjacent in T . Therefore, computing valid
trees requires enumerating an intractable number of trees and interpreting them.

One way to get around this is to approximate this search by taking zú to be the

1The backwards star BS(v), which in ordinary directed graphs denotes the set of incoming edges
to v, has a forward variant FS = {e | v œ t(e)} that is analogous to Adj in Algorithm 4.
We note that for DAG SSSP search, either type of traversal order can be used, whereas BS
traversal is more straightforward for hypergraphs (see discussion in Huang (2008)).

123

4 Learning from Entailment for Semantic Parsing

Rep

in transitive

kick
c

kick
w

ball

kick
c

kick
w

the

kick
c

kicks

⁄c

⁄
w

quickly

arg1

purple10
c

purple 10

Figure 4.8: An example derivation (simplified) in the base semantic grammar with
a gap rule ⁄

c

applied over the modifier quickly.

interpretation of the most probable derivation:

zú ¥ JyKG = arg max
yœYx

Ó
p

◊

(y)
Ô

(4.10)

which is what we do when evaluating our models. While this works well for de-
coding at test time, it is still a problem when estimating our models (i.e., finding
the expected counts of rules in valid derivations during the training phase). We
discuss this more in Section 4.4.3, and propose a simple EM bootstrapping method
that similarly involves sampling the best derivations via k-shortest path decoding
(using variations of the DAG k-SSSP algorithms used in Section 3.4).

4.4.1 Rule Extraction and J·KG

As already discussed, rule extraction is the process of constructing the grammar
rules R needed for generating z’s from input x. We start by describing rule con-
struction for grammars that generate LFs (or what we call base semantic grammars)
and return to how rule extraction works for modeling inference in Section 4.4.2
(the inference grammars). In this first case, such rules are constructed automati-
cally using a small set of rule templates defined over the target set of LFs, as done

124

4.4 Grammar-based Semantic Parsing

in Börschinger et al. (2011) (BB). The basic idea in BB is to break down all LFs
in the target corpus of the form R(x, y) into the following production rules:

S æ R(x, y)
R(x, y) æ

Ó
R

c

x
c

y
c

Ô

where the lhs of the second rule is a representation of the full LF, and the rhs
consists of all orderings (as indicated by {·}) of the constituent parts of the LF
expressed as grammar symbols (i.e., the relation name R and the arguments, all
marked here as X

c

). Each non-terminal X
c

is then associated with a word rule X
w

,
that rewrites to all unigrams in the target corpus via a left-recursive rule that
models a unigram Markov-process (Johnson and Goldwater, 2009) (e.g., the rule
sequence for kicks the ball in Figure 4.8):

X
c

æ X
w

X
c

æ X
c

X
w

X
w

æ w | w œ Corpus

Using this basic idea, additional structure and information can be added into
the grammar as needed. For example, BB use word order rules that make explicit
the di�erent orderings of constituent rules in {·}, as well as more complex word
rules that allow for modeling empty (or skip) words ⁄

w

. We adopt both of these
ideas, and pad all nodes X

c

with a gap rule ⁄
c

that allows the model to learn
larger spans of unanalyzed text. For example, in Figure 4.8 the model learned that
quickly is not analyzed in the target LF, which is information that can be used by
our inference model (described in Section 4.4.2) to reason about the semantics of
these gaps. Rather than representing full LFs in the grammar as atomic symbols,
we also assign more abstract role types to the concepts X

c

(e.g., arg1, in transitive
in Figure 4.8), to make the rules more generalizable (see Appendix C for a full
description of the rule templates we use in our experiments).

As discussed above, each derivation tree y can be interpreted to a unique LF via

125

4 Learning from Entailment for Semantic Parsing

an interpretation function J·KG:

J·KG : y (derivation) æ z (4.11)

In our case, this function works by deterministically mapping each grammar sym-
bol X

c

to an atomic logical symbol, and combining these symbols in a way that is
consistent with the assigned roles. For example, kick

c

in Figure 4.8 is mapped to
the symbol kick and assigned to the main predicate slot given the in transitive
role, and purple10

c

is mapped to purple10 as assigned as the first argument slot
given the arg1, which results in the LF representation kick(purple10).

An important feature of the resulting grammars is that they overgenerate (as
shown in Figure 4.8); given a text input, the grammar will generate a large space of
possible derivations, many of which interpret to incorrect LFs. By assigning weights
to these rules and formalizing the model as a PCFG, the learning problem reduces
to a grammatical inference problem, or finding a grammar G

◊

with parameters
◊ that is able to distinguish correct derivations (i.e., derivations that have the
correct interpretations) from incorrect derivations. Under a hypergraph approach,
we can equivalently describe the learning problem as finding a model that is able
to identify the correct paths through graphs such as the one in Figure 4.7 (see
Section 4.4.3 for more details about learning).

4.4.2 Natural Logic and Inference Grammars

Given the base semantic grammars described in the previous section, we can build
a semantic parser that (standardly) translates text to output LFs, however the
resulting derivation trees still have gaps (i.e., unanalyzed spans of text as shown
in Figure 4.8) and our model continues to lack the background knowledge needed
for reasoning about entailment. As already proposed, we aim to learn this missing
information by extending our training corpus to include pairs x = (t, h) annotated
with entailment information. With this information, our approach works in the
following way: align the related spans of text in t and h and apply logical reasoning
over these spans to construct a proof of an entailment, as sketched below:

126

4.4 Grammar-based Semantic Parsing

a:

Sem
sv

play-intr.

steal

steals the ball

player
arg1

pink5

5

5

pink

pink

Sem
vs

player
arg1

pink5

5

5

pink

pink

⁄
c

at the goal by

play-intr

defense

good defense

y:

(©
player

arg1 ÛÙ #play-intr.) = # = Uncertain

join

(ˆ
c

ÛÙ ıplay-intran.) = #play-intr.

modifier
ıplay-intr.

steal/defense

steals the ball / good defense by

substitute

ˆ
c

⁄/ ı
c

⁄ / at the goal by

insert

©
player

arg1

pink5/pink5

pink 5 / pink 5

substitute

A

(t = pink 5 steals the ball, h = good defense at the goal by pink 5), z = Uncertain

B

Figure 4.9: An end-to-end example produced by our inference grammar model.

t h

LFt LFh entailment

text alignment

logical reasoner

This idea is further illustrated in Figure 4.9, where an alignment a between t
and h is computed by heuristically matching related roles in the semantic parse for
each sentence (generated using the base semantic grammars described above). The
associated spans of aligned text are then provided to a logical reasoner that remaps
the aligned spans to logical symbols, then generates a structured proof y over
these symbols that corresponds to a unique entailment judgement. Importantly,
gap rules in t or h (e.g. at the goal by in h, marked as ⁄

c

) and unaligned arguments
are matched to the empty string ⁄ so that the logical model can reason about the
semantics of inserting or deleting expressions in h and t.

127

4 Learning from Entailment for Semantic Parsing

Relation Symbol Set Definition First-order Logic RTE label
forward entail R ı S R µ R ’x.

#
R(x) æ S(x)

$
entail

reverse entail R ˆ S R ∏ S ’x.

#
S(x) æ R(x)

$
uncertain

equivalence R © S R = S ’x.

#
R(x) ¡ S(x)

$
entail

alternation (negation) R | S R fl S = ÿ · R fi S ”= D ’x.¬
#
R(x) · S(x)

$
contradict

independence R # S (all other cases) – uncertain

Sports Examples (with denotation illustration)

3

2

3 4
5
61 7

8
1

2

3 4
5
61 7

8

purple3 ı purple team pass ˆ bad pass pink1 © pink1 block | kick

Figure 4.10: A description of relations used from the natural logic calculus (top)
with examples (bottom) from Sportscaster.

Natural Logic Calculus

In order to do modeling of this kind, we need a logical calculus that can per-
form reasoning over spans of text. Since our main goal is to learn proofs and the
background knowledge that drives the proofs, such a model should also support
uncertainty. Given these constraints, we use a fragment of the natural logic calcu-
lus defined in MacCartney and Manning (2009, 2008). In our simplified version,
the model has two components: 1) a set of relations that define abstract semantic
relationships between concepts (i.e., primitive symbols in our target LF represen-
tations) and 2) a set of inference rules that can compose relations. The full set of
semantic relations are shown in Figure 4.10, along with a definition of their mean-
ing in set theory and first-order logic (or FOL, following Pavlick et al. (2015)). For
example, the following relation between pass and kick:

pass ı kick

can be read in FOL as a general implication (van Benthem, 1986): for all events
e involving passing, e also involves kicking. Assuming that we are given two pairs
of relations, pink5 ı pink team and pass ı kick, the join rule ÛÙ defined in

128

4.4 Grammar-based Semantic Parsing

Figure 4.11 then composes these two relations to derive a new relation:

1
pink5 ı pink team

2
ÛÙ

1
pass ı kick

2
= ı

which in this case allows us to conclude that pink5 passed (forward) entails that
the pink team kicked (on the assumption that pink5 forward entails pink team and
pass forward entails kick). Joins can be applied an arbitrary number of times; for
example, we might continue by adding ⁄ ˆ quickly to model in the RTE context
the insertion of a modifier quickly on the h side:

1
pink5 pass ı pink team kick

2
ÛÙ

1
⁄ ˆ quickly

2
= #

which results in a new relation #. This process can continue further until all target
relations have been consumed, which will result in a final semantic relation and
entailment (see Figure 4.10 to see the mapping from relations to RTE labels).

We note that our simplified model uses only a subset of the seven relations from
MacCartney and Manning (2009), since these additional relations were not needed
to model the types of inferences we encountered in the Sportscaster domain. As a
cautionary note, we also point out that our model fails to capture various complex
inferences. For example, assuming every © every and company ˆ small company,
our model cannot generate the following entailment using the join inference rule:

every company ı every small company

since this particular inference is related to special properties of every, which con-
vert ˆ inferences to ı when doing composition in this context. To handle this,
the full natural logic calculus has a projectivity mechanism that defines how cer-
tain constructions alter the inferences of arguments in such contexts. In our simple
mode and domain, projectivity is limited to a single rule that always projects nega-
tions | up the proof tree in order to capture the following inferences:

pink5 kick | purple team pass

where under the assumption that pink5 | purple team and kick ˆ pass, our

129

4 Learning from Entailment for Semantic Parsing

ÛÙ © ı ˆ | #
© © ı ˆ | #
ı ı ı # | #
ˆ ˆ # ˆ # #
| | # | # #
#

Figure 4.11: The join inference rule ÛÙ table for the set of relations in Figure 4.10.

join rule would incorrectly assign # (or an uncertain entailment). This is again
motivated by the types of predicates we model in the Sportscaster domain, which
all tend to have the projectivity properties of functional relations (Russell (1995),
see MacCartney (2009)[Chapter 6.2.5] for more discussion).

Inference Grammars and Alignment

Given the tree-like nature of the natural logic proofs described above, our idea is
to represent the inference steps as CFG rewrite rules, as shown in Figure 4.122.
Under this approach, relations between pairs of concepts are rules where the rhs
contains the pair of ordered concepts (delimited by /) and the lhs contains their
resulting relation. The same idea applies to our inference rule ÛÙ: the rhs consists
of two relations and the lhs contains the result of joining these relations. As before,
additional structure can be added to the grammar as needed, such as information
about the types of concepts being compared and composed (see Appendix C for a
complete list of the rules we use, as well as Figure 4.15).

In particular, we use an additional set of gap rules, as shown in Figure 4.12, that
model whether certain types of insertions/deletions are forward-entailing (repre-
sented using ı

c

) or non-entailing (©
c

). In the first case, this includes adverbial
modifiers such as quickly in quickly kicked which modify entailment, whereas the

2This particular grammar formulation can be regarded as a type of inversion transduction
grammar (Wu, 1997), or a simple transduction grammar (Lewis II and Stearns, 1968), where
each terminal rule is marked with an input and output symbol and non-terminals are the same
as in ordinary CFGs. Recognition and decoding with these models is equivalent to ordinary
CFG parsing as described above (Melamed, 2004; Lopez, 2008).

130

4.4 Grammar-based Semantic Parsing

entailment ≠æ
I

{ı , ©}
uncertain ≠æ

I

{ˆ , #}
contradict ≠æ

I

|
R = (X ÛÙ Y) ≠æ

ÛÙ

X Y
1.0 ©arg ≠æ

I

pink3
c

/ pink3
c

0.9 ıarg ≠æ
I

pink1
c

/ pink team
c

0.1 ıarg ≠æ
I

pink team
c

/ pink1
1.0 ˆ ≠æ

I

⁄ / ı
c

1.0 ı ≠æ
I

ı
c

/ ⁄

1.0 © ≠æ
I

©
c

/ ⁄

1.0 © ≠æ
I

⁄ / ©
c

0.8 ırel ≠æ
I

pass
c

/ kick
c

0.2 ırel ≠æ
I

kick
c

/ pass
c

0.7 ˆrel ≠æ
I

kick
c

/ pass
c

0.3 ˆrel ≠æ
I

pass
c

/ kick
c

0.1 |rel ≠æ
I

pass
c

/ kick
c

· · ·

Figure 4.12: An example inference grammar for the Sportscaster domain with gap
rules shown in red.

ball in kick the ball does not appear to e�ect entailment. To model the subtle dif-
ferences between di�erent concept senses, we also mark symbols with latent sense
labels. For example, in the following rule:

ı
rel

æ kick
c1 / kick

c2

we have two senses for kick, which we can use to model entailments between kick
the ball and score a goal (which are both annotated as kick in Sportscaster).

As discussed at the onset, given a pair x = (t, h), we can generate trees in this
grammar by heuristically aligning related spans in t and h (see again Figure 4.9,
and Appendix C for more details), then by labeling each part of the the spans
with concept labels and applying the grammar rules. The interpretation of a given
derivation (proof tree) JyKG is the entailment provided at the top node of each
tree. As shown in the grammar in Figure 4.12, the concept labels X

c

are the same

131

4 Learning from Entailment for Semantic Parsing

as in our LF semantic parser, which allows us to create a single grammar by com-
bining the inference rules with the base semantic grammar (and therefore use the
same learned concept mapping rules as in our main semantic grammar). In our
experiments, the decision to jointly train the sem and infer models using a single
grammar is based on the following modeling assumption:

• Joint entailment modeling: When learning a semantic parser, improve-
ments on learning the correct entailments should help improve (and are tied
to) learning translations to LFs, and vice versa.

As with the base semantic grammars, an important feature of the inference
grammars described above is that they overgenerate; given an input, the grammar
will generate a large space of possible proofs, many of which interpret to the
wrong entailment. This is largely due to the fact that we do not know the correct
relations between the underlying concepts and modifiers and start by assuming all
possibilities. For example, since we do not know the relation between pass and
kick, we start with the following three rules:

ı
rel

æ pass
c

/ kick
c

ˆ
rel

æ pass
c

/ kick
c

|
rel

æ pass
c

/ kick
c

The key idea is that by interpreting these grammars as PCFGs, we can then
associate weights with individual rules of this type and learn the correct relations
by training our grammar on example entailments. In this case, the goal is to learn
that the first rule should have a higher weight than the other two rules since pass
forward entails kick as inferred from its appearance in example proofs. Given
that particular orderings of join inferences can e�ect the resulting entailments
(MacCartney, 2009), the PCFG approach also allows for learning optimal inference
combinations.

Under the PCFG formulation, our model can therefore handle probabilistic in-
ference, which distinguishes it from most other formulations of natural logic (for a
similar idea, see Angeli and Manning (2014)). While our particular rule templates
might seem arbitrary at first glance, we note that the probabilistic logic that re-

132

4.4 Grammar-based Semantic Parsing

sults from this formulation seems to have a sensible semantics. In addition, our
use of grammar representations allows us to apply e�cient search strategies from
parsing to the problem of entailment search. For example, the probability of an
entail using Equation 4.7 is given by the following:

p
◊

(z = entail | x = (t, h)) =
ÿ

yœYx|JyKG=entail

p(y | x)

and is interpreted as all proofs between t and h that evaluate to entailment (within
the space of all possible proofs and across all individual semantic interpretations of
t and h). Since our approach involves a heuristic alignment between t and h (and
hence is not burdened by having to search all possible alignments), the basic proof
search is therefore bound to the complexity of ordinary recognition (e.g., using the
CKY algorithm), or O(|x|3 · |G

R

|). Since the interpretation in these grammars only
requires reading a single node, computing the above equation can be done exactly
with the same complexity using the inside algorithm (Lari and Young, 1990).

4.4.3 Learning

As discussed in the previous section, we model sem and infer using a joint PCFG
model that uses the rules described above. To learn this model, we perform maxi-
mum likelihood estimation (MLE) over our parallel dataset D = {(x(d), Z(d))}|D|

d=1,
consisting both of parallel semantic parsing data and parallel inference data. For-
mally, the objective is to find grammar parameters ◊ú that maximize the following
(where we use C(d) to denote the set of valid (interpretable) derivations relative to
each training annotation Z(d) and input x(d): {y | y œ Yx(d) · JyKG œ Z(d)}):

◊ú = max
◊

log
|D|Ÿ

d=1

C

p
◊

(z(d) | x(d))
D

(4.12)

= max
◊

|D|ÿ

d=1
log

C
ÿ

yœC(d)

p
◊

(y)
D

via Eq. 4.7 (4.13)

To optimize this objective, we use a variant of the EM algorithm (for a review of
EM, refer back to Section 2.3.1). As in normal EM for PCFGs (Lari and Young,

133

4 Learning from Entailment for Semantic Parsing

Algorithm 10 EM Grammar Boostrapping
Input: Grammar G with parameters ◊, dataset D, interp. function J KG , KBest function with k

Output: Learned parameters ◊

1: ◊

0 Ωuniform initialization
2: t Ω 0
3: repeat
4: c(N æ —) Ω 0, ’N æ — œ G

R

Û Initialize counters to collect rule counts
5: b(N) Ω 0, ’N æ — œ G

R

6: for (x(d)
, Z(d)) from d = 1 up to | D | do Û E-Step: evaluate p

◊

(Z | x) ≥ KBest
7: v Ω [], n Ω 0
8: for (y, p) œ KBest(d)(x(d)

, G, ◊

t

, k) doÛ Find candidate derivation y, p = p

◊

(y | x)
9: if JyKG œ Z(d) then

10: n Ω n + p Û Add valid derivations with scores
11: v Ω v + (y, p)
12: for (y, p) œ v do Û Count rules in valid derivations
13: for N

i

æ —

i

from i = 1 up to |y| do
14: c(N

i

æ —

i

) Ω c(N
i

æ —

i

) + p

n

Û Normalize using n to create prob. distr.
15: b(N

i

) Ω b(N
i

) + p

n

16: for N æ — œ G
R

do Û M-step: perform MLE updates
17: ◊

t+1
Næ—

Ω c(Næ—)
b(N)

18: t Ω t + 1
19: until converged

return ◊

t

1990; La�erty, 2000), the E-step involves finding the expected counts of individual
production rules R in all latent derivations (or in our case, all valid derivations
C(d)) given D and some posterior distribution p

◊

t(y | x(j)):

c(R; D) =
|D|ÿ

d=1

C
ÿ

yœC(d)

p
◊

t(y | x(d))
|y|ÿ

i

”(r
i

, R)
D

(4.14)

Using these counts, the M-Step then involves performing ordinary MLE updates,
and the process then repeats until a convergence point:

◊t+1
Næ—

= c(N æ —; D)
q

—

Õ c(N æ —Õ; D) (4.15)

As before, the main problem involves e�ciently computing the set of valid deriva-
tions C(d), since our interpretation function J·KG involves non-local combinations

134

4.4 Grammar-based Semantic Parsing

input Yx

Purple 7 kicks to Purple 4

world
z = {pass(purple7,purple4)}

Beam Parser ◊

t

Interpretation

d1

Semsv

play-transitive

playerarg2

purple4c

purple 4

passr

passc

passes to

playerarg1

purple7c

purple 7

d2

Semsv

play-transitive

playerarg2

purple4c

purple 4

turnoverr

turnoverc

passes to

playerarg1

purple7c

purple 7

d3

Semsv

play-transitive

playerarg2

purple8c

purple 8

kickr

passc

passes to

playerarg1

purple7c

purple 7

d4

Semsv

playerarg1

play-transitive

passr

passc

purple 4

playerarg2

purple4c

passes to

playerarg1

purple7c

purple 7

... ... dk ...

k-best list

◊t+1

input Yx
t: pink 1 kicks
h: pink 1 quickly passes to pink 2

world
z = Uncertain

Beam Parser ◊

t

Interpretation

d1

ˆ

ˆ

ˆ

⁄/pink2

⁄/ pink2

ˆ

ˆ

kick/pass

kicks / passes to

ˆc

⁄/ ı

⁄ / quickly

©

pink1/pink1

pink 1 / pink 1

d2

ˆ

ˆ

ˆ

⁄/pink2

⁄/ pink2

ˆ

ˆ

kick/pass

kicks / passes to

©c

⁄/ ©

⁄ / quickly

©

pink1/pink1

pink 1 / pink 1

d3

|

|

ˆ

⁄/pink2

⁄/ pink2

|

|

kick/pass

kicks / passes to

ˆc

⁄/ ı

⁄ / quickly

©

pink1/pink1

pink 1 / pink 1

d4

|

|

ˆ

⁄/pink2

⁄/ pink2

|

|

kick/pass

kicks / passes to

©c

⁄/ ©

⁄ / quickly

©

pink1/pink1

pink 1 / pink 1

... ... dk ...

k-best list

◊t+1

Figure 4.13: An illustration of EM bootstrapping for semantic parsing and learning
from entailment, where green shows the valid derivations.

of derivation rules. We get around this by approximating each Yx in C(d) with a
k-best list of derivations KBest(d) ¥ Yx (Angeli et al., 2012). Under the hyper-
graph approach outlined in Section 4.4, sampling the k-best derivations can be
achieved by extending the branching k≠SSSP method used in Algorithm 7 and
Section 3.4.3 for DAGs to hypergraphs, as done in Nielsen et al. (2005). Given
special features of parsing, however, more e�cient methods based on hypergraphs
have been developed, notably the lazy k-best algorithm from Huang and Chiang
(2005), which is what we use in our experiments.

The full training algorithm is shown in Algorithm 10, along with an illustration
in Figure 4.13 of detecting the valid derivations (line 9) and computing new param-
eters ◊t+1 based on collected rule counts (lines 16-17). As discussed in Liang et al.

135

4 Learning from Entailment for Semantic Parsing

(2011), the idea is that learning starts in an unguided manner and improves over
time by bootstrapping o� of the easy examples. When training with the entailment
pairs, the distinctions being made for modeling inference (e.g. sense distinctions,
modifier types) and the word rules being used inform and reinforce the learning
of the base semantic grammar. As the quality of the semantic parser improves, so
should the quality of the background knowledge (i.e. semantic relations) used to
generate the natural logic proofs.

4.5 Experimental Setup
In this section, we provide more details about the Sportscaster dataset and a new
Sportscaster inference corpus that we created for modeling and evaluating entail-
ment. We also describe our main experimental setup, which consists of two tasks:
1) the standard Sportscaster semantic parsing task, and 2) a new RTE-style entail-
ment recognition task. We end the section by providing additional implementation
and model details (for more information, see also Appendix C).

4.5.1 Datasets

Sportscaster The Sportscaster corpus (Chen and Mooney, 2008a) consists of 4
simulated Robocup soccer games annotated with human commentary. The English
portion includes 1,872 sentences paired with sets Z of logical meaning represen-
tations. On average, each training instance is paired with 2.3 meaning represen-
tations. The representations have 46 di�erent types of concepts, consisting of 22
entity types and 24 event (and event-like) predicate types (see Figure 3.9 for a
description and implementation of the Sportscaster language).

While the domain has a relatively small set of concepts and limited scope, rea-
soning in this domain still requires a large set of semantic relations and background
knowledge. From this small set of concepts, the inference grammar described in
Section 4.4.2 encodes around 3,000 inference rules. Since soccer is a topic that most
people are familiar with, it is also easy to get non-experts to provide judgements
about entailment.

136

4.5 Experimental Setup

Task 1: Semantic Parsing Match F1(%)
LexDecoder (Chapter 3) 40.3
Kim and Mooney (2010) 74.2
Chen et al. (2010) 80.1
Best Seq2Seq model (Chapter 3) 83.4
Börschinger et al. (2011) 86.0
Gaspers and Cimiano (2014) 88.7
base semantic grammar (BSG) only 95.7
BSG + inference grammar (IG) 95.8
BSG + IG + More Data 96.3

Task 2: Inference Task Accuracy (%)
Majority Baseline 33.1
RTE classifier 52.4
Näıve Inference 59.6
SVM Flat Classifier 64.3
inference grammar (Lex. Inference Only) 72.0
inference grammar (Full) 73.4
inference grammar + More Data 72.3

Table 4.1: Results on the semantic parsing (top) and inference (bottom) cross val-
idation experiments (averaged over all folds)

Extended Inference Corpus The extended corpus consists of 461 unaligned
pairs of texts from the original Sportscaster corpus annotated with sentence-level
entailment judgements (as first shown in Figure 4.2). We annotated 356 pairs
using local human judges an average of 2.5 times using a version of the elicitation
instructions for RTE from Snow et al. (2008). Following (Dagan et al., 2005),
we discarded pairs without a majority agreement, which resulted in 306 pairs (or
85% of the initial set). We also annotated an additional 155 pairs using Amazon
Mechanical Turk, which were mitigated by a local annotator.

In addition to this core set of 461 entailment pairs, we separately experimented
with adding unlabeled data (i.e., pairs without inference judgements) and ambigu-
ously labelled data (i.e., pairs with multiple inference judgements) to train our
inference grammars (shown in the results as More Data in Table 4.1) and test the
flexibility of our model. This included 250 unlabeled pairs taken from the origi-
nal dataset, as well as 592 (ambiguous) pairs created by deriving new conclusions
from the annotated set. This last group was constructed by exploiting the transi-
tive nature of various inference relations and mapping pairs with matching labels
in training to {Entail,Unknown}.

137

4 Learning from Entailment for Semantic Parsing

4.5.2 Evaluation

We perform two types of experiments: first, a semantic parsing experiment (Task
1 in Table 4.1) to test our approach on the original task of generating Sportscaster
LF representations. In addition, we introduce a new inference experiment (Task 2)
to test our approach on the problem of detecting entailments between unobserved
sentence pairs using our inference grammars.

For the semantic parsing experiment, we follow exactly the setup of Chen and
Mooney (2008a): 4-fold cross validation is employed by training on all variations
of 3 games and evaluating on a left out game. Each representation produced in the
evaluation phrase is considered correct if it matches exactly a gold representation
and (standardly) F1 score is reported3.

The second experiment imitates an RTE-style evaluation and tests the quality
of the background knowledge being learned using our inference grammars. Like in
the semantic parsing task, we perform cross-validation on the games using both
the original data and sentence pairs to jointly train our models, and evaluate on
left-out sets of inference pairs. Each proof generated in the evaluation phrase is
considered correct if the resulting inference label matches a gold inference. We
report on the accuracy of predicting the correct entailment label (within the set {
entail, contradict, unknown/compatible}).

4.5.3 Implementation and Model Details

As already discussed, we implemented the learning algorithm shown in Algo-
rithm 10 using the k-best algorithm of Huang and Chiang (2005) (i.e., for the
KBest computation in line 8) with a uniform beam size k of 1,000. Following An-
geli et al. (2012), we also smoothed rule counts (line 10) by using an additive prior
– set to 0.05 for lexical word rules and 0.3 for non-lexical rules. To get good ini-
tial estimates of word and concept mapping rules, we pre-trained the joint LF and
inference grammars by first training the base semantic grammars on the original
semantic parsing data for 3 iterations. Lexical rule probabilities were also initial-
ized using co-occurrence statistics estimated using an IBM Model1 word aligner

3As with Börschinger et al. (2011), since our grammar model parses every sentence, precision
and recall are identical, making F1 identical to accuracy.

138

4.6 Experimental Results and Discussion

(uniform initialization otherwise).
In the inference grammars, 5 additional senses were added to the most frequent

event predicates. In terms of other added background knowledge, we made the
default assumption that player terms (i.e., purple1,pink1,...) have a negation
relation | with other player terms that they do not match, and assumed all possible
semantic relations between all other types (see Appendix C for more details).

4.6 Experimental Results and Discussion
In this section, we detail the main results featured in Table 4.1 for both tasks, and
provide some qualitative analysis on the resulting models.

Task 1: Semantic Parsing

We compare the results of our base semantic parser model with previously pub-
lished semantic parsing results (including some of the experiments from Section 3.5).
While our grammar model simplifies how some of the knowledge is represented in
grammar derivations (e.g., in comparison to Börschinger et al. (2011)), the set of
output representations or interpretations is restricted to the original Sportscaster
formal representations making our results fully comparable. As shown, our base
grammar (shown as base semantic grammar (only) in Table 4.1) strongly outper-
forms all previously published results even without the additional inference data
and rules. Since our approach is similar to Börschinger et al. (2011), one takeaway
is that better rule extraction seems to go a long way in improving accuracy, and
might help to improve models such as the Seq2Seq model from the last chapter.

We also show the performance of our inference grammars on the semantic parsing
task after being trained with additional inference sentence pairs. This was done
under two conditions: when the inference grammar was trained using fully labeled
inference data and unlabeled/ambiguously labeled data (more data). While not
fully comparable to previous results, both cases achieve nearly the same results
as the base grammar, indicating that our additional training setup does not lead
to an improvement on the original task (but nonetheless has minimal e�ect of the
resulting accuracy).

139

4 Learning from Entailment for Semantic Parsing

1a.

Sem
sv

play-transitive

playerarg2

purple6
c

6
c

6 under pressure

purple
c

purple

passr

pass
c

pass
p

passes to

player
arg1

purple9
c

purple 9

1b.

Sem
sv

play-transitive

playerarg2

ıc

ıp

under pressure

purple6
c

purple 6

passr

pass
c

pass
p

passes to

player
arg1

purple9
c

purple 9

2a.

Sem
sv

play-transitive

playerarg2

purple2
c

purple 2

passr

pass
c

pass
p

passes out to

player
arg1

purple9
c

purple 9

2b.

Sem
sv

play-transitive

playerarg2

purple2
c

purple 2

passr

pass
p

pass
w

to

pass
phx

©
w

out

pass
w

passes

player
arg1

purple9
c

purple 9

Figure 4.14: Example parse trees (1,2) before (a) and after (b) training on the
extended inference corpus (new inferences shown in gray boxes).

Task 2: Inference Task

The main result of this chapter is the performance of our inference grammars on
the inference task. For comparison, we developed several baselines, including a
Majority Baseline (i.e., guess the most frequent inference label from training).
We also use an RTE (max-entropy) classifier that is trained on the raw text
inference pairs to make predictions. This classifier uses a standard set of RTE
features (e.g., word overlap, word entity co-occurrence/mismatch). Both of these
approaches are strongly outperformed by our main inference grammar (or inference
grammar (Full)).

The Näıve Inference baseline compares the full Sportscaster representations gen-
erated by our semantic parser for each sentence in a pair and assigns an entail
for representations that match and a contradict otherwise (as first discussed in

140

4.6 Experimental Results and Discussion

ıplay-tran

ÛÙ

©play-tran.

pass/pass

“pass to’/“passes to”

ıc

ıc /⁄

“a beautiful”/⁄

a. beautiful(X) ı X

©game-play

ÛÙ
©game-play

freekick/freekick

“free kick” / “freekick from”

©c

©c /⁄

“gets a”/⁄

b. get(X) © X

ıplay-tran

ÛÙ

©play-tran.

pass/pass

“passes to”/“kicks to”

ıc

ıc /⁄

“yet again”/⁄

c. yet-again(X) ı X

|
team

arg1

substitute

pink team/purple9

“pink team’/“purple 9”

d. pink team | purple9

ıplay-tran

substitute

bad pass/turnover

“bad pass picked o� by”/“loses the ball”

e. bad pass ı turnover

|game-play

substitute

free kick/steal

“free kick for”/“steals the ball from”

f. free kick | steal

Figure 4.15: Example proof trees involving construction-based (top) and lexical-
based (bottom) inferences generated by our model.

Section 4.3.2). This baseline compares the inferential power of the original repre-
sentations (without background knowledge and more precise labels) to the inferen-
tial power of the inference grammars. The strong increase in performance suggests
that important distinctions that are not captured in the original representations
are indeed being captured in the inference grammars.

We tested another classification approach using a Flat Classifier, which is a
multi-class SVM classifier (Joachims, 2002) that makes predictions using features
from the input and part of the inference model. Such input includes both sentences
in a pair, their parse trees and predicted semantic labels, and the alignment be-
tween the sentences. In Figure 4.9, for example, this includes all of the information
excluding the proof tree in y. This baseline aims to test the e�ect of using hierar-
chical, natural logic inference rules as opposed to a flat or linear representation of
the input, and to see whether our model learns more than the just the presence
of important words that are not modeled in the original representations. Features
include the particular words/phrases aligned or inserted/deleted, the category of

141

4 Learning from Entailment for Semantic Parsing

sense/context error:
1. t: pink9 shoots

h: pink9 shoots for the goal

z: entail (model prediction: uncertain)

semantic parser and alignment error:
2. t: purple8 steals the ball back

h: purple8 steals the ball from pink6

z: uncertain (model prediction: contradict)

alignment and modifier error:
3. t: A goal for the purple team

h: And the purple team scored another goal

z: uncertain (model prediction: entail)

Figure 4.16: Example cases where our inference grammars fail.

these words/phrases in the parse trees, the rules in both parse trees and between
the trees, the types of predicates/arguments in the predicted representations and
various combinations of these features. This is also strongly outperformed by our
main model, suggesting that the natural logic system is learning more general
inference patterns.

Finally, we also experimented with removing insertions and deletions of mod-
ifiers from alignment inputs to test the e�ect of only using lexical knowledge to
solve the entailment problems (Lexical Inference Only). In Figure 4.9 this involves
removing “at the goal” from the alignment input and relying only on the gram-
mars knowledge about how steal (or “steals the ball”) relates to defense (or good
defense by) to make an entailment decision. This only slightly reduced the accu-
racy, which suggests that the real strength of the grammar lies in its knowledge of
lexical relationships or lexical-based inferences.

Qualitative Analysis and Discussion

One benefit of our grammar-based approach is that we can inspect how the system
reasons by looking at example derivation trees generated by the model. While our
experiments show that the inference grammar does not increase accuracy on the
original semantic parsing task, a manual inspection indicates that the model is

142

4.6 Experimental Results and Discussion

nonetheless learning improved representations, as we shown in Figure 4.14. In
example 1, for example, the parser learns after being trained on the inference data
that the modifier under pressure should be treated as a separate constituent in the
parse tree. The particular analysis also captures the correct semantics by treating
this phrase as forward-entailing, which allows us to predict how the entailment
changes if we insert or delete this constituent. Similarly, the parser learns a more
fine-grained analysis for the phrase passes out to by treating out as a type of
modifier that does not a�ect entailment.

Figure 4.15 shows the types of knowledge learned by our system and used in
proofs. The top row shows example construction-based inferences, or modifier con-
structions. For example, the first example treats the word beautiful in a beautiful
pass as a type of modifier that changes the entailment or implication when it is
inserted (forward-entails) or deleted (reverse-entails). In set-theoretic terms, this
rule says that the set of beautiful passes is a subset of the set of all passes. The
bottom row show types of lexical-based inferences, or relations between specific
symbols. For example, the model learns that the pink team is disjoint from a
particular player from the purple team, purple9, and that a bad pass implies a
turnover event.

Figure 4.16 shows three common cases where our system fails. The first error
(1) involves a sense error, where the system treats shoots as having a distinct sense
from shoots for the goal. This can be explained by observing that shoots is used
ambiguously throughout the corpus to refer to both shooting for the goal and
ordinary kicking. The second example (2) shows how errors in the semantic parser
(which is used to generate an alignment) propagate up the processing pipeline. In
this case, the semantic parser erroneously predicted that pink6 is the first argument
of the steal relation (a common type of word-order error), and subsequently
aligned purple 8 to pink6. Similarly, the semantic parse tree for the hypothesis
in the last (3) failed to predict another as a modifier, which would generate an
alignment with the empty string ⁄. The last two cases show the limitation of our
approach to generating alignments, and suggests that allowing the model to reason
about di�erent possible alignments might help avoid these errors.

Looking ahead, we note that while we use a simplified version of the full natural
logic calculus (owing to the simplicity of the Sportscaster domain), our general

143

4 Learning from Entailment for Semantic Parsing

approach is amendable to more complex logical systems. For example, we could
implement complex projection rules for quantifiers and other linguistic operators
by simply introducing new symbols in our grammar with specially designed join
rules. In introducing more complex rules that go beyond simple joins, however, we
would be greatly expanding the space of possible proofs; whether learning in such a
large space (with only minimal background assumptions) is feasible is an empirical
question. It also remains to be seen whether using entailment as a learning signal
might help to learn other types of complex linguistic structure, which is a question
that we leave for future work.

4.7 Conclusions
In this chapter, we considered the problem of training semantic parsers in do-
mains where the target logical forms are underspecified and fail to capture basic
facts about entailment and inference. As a general solution to this problem, we
introduced a new learning framework called learning from entailment that involves
adding pairs of sentences annotated with entailment information to the semantic
parser’s training data. With this added data, we then force the semantic parser to
generate explanations of the provided entailments, which forces the model to learn
more about the target domain and find holes in the provided annotations.

To experiment with this idea, we performed experiments on the benchmark
Sportscaster corpus from Chen and Mooney (2008a), which we expanded to include
a corpus of sentence pairs annotated with entailments. As a way of operationalizing
this idea of forcing the semantic parser to generate explanations, we created a novel
grammar-based semantic parsing architecture and learning strategy that includes a
probabilistic reasoning component based on the natural logic calculus (MacCartney
and Manning, 2009). With this added machinery, the resulting model is able to
jointly learn to generate logic forms, as well as perform symbolic reasoning over
symbols in the target learning and solve entailment tasks.

Using our general approach, we achieved state-of-the-art results on the original
Sportscaster semantic parsing task. To demonstrate the e�ectiveness of our model
on modeling entailment, we also introduced a new RTE-style evaluation task based
on the extended Sportscaster corpus, on which our main inference model strongly

144

4.7 Conclusions

outperformed several strong baselines (with around 73% accuracy). In conclusion,
we found that learning from entailment can be an e�ective technique for improving
the representations being learned for semantic parsing, and for making the learning
of semantic parsers more robust.

145

