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Figure 1 | Conceptual illustration of Tse Al SCIENTIST, an end-to-end LLM-driven scientific discovery
process. THE Al SCIENTIST first invents and assesses the novelty of a set of ideas. It then determines how to
test the hypotheses, including writing the necessary code by editing a codebase powered by recent advances in
automated code generation. Afterward, the experiments are automatically executed to collect a set of results
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explained, and summarized in a LaTeX report. Finally, THE AI SCIENTIST generates an automated review,
according to current practice at standard machine learning conferences. The review can be used to either
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Problem: Largely system demonstrations
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test the hypotheses, including writing the necessary code by editing a codebase powered by recent advances in
automated code generation. Afterward, the experiments are automatically executed to collect a set of results
consisting of both numerical scores and visual summaries (e.g. plots or tables). The results are motivated,
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Community has not yet come up with clear tasks or metrics.
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Figure 1 | Conceptual illustration of THE Al SCIENTIST, an end-to-end LLM-driven scientific discovery
process. THE Al SCIENTIST first invents and assesses the novelty of a set of ideas. It then determines how to
test the hypotheses, including writing the necessary code by editing a codebase powered by recent advances in
automated code generation. Afterward, the experiments are automatically executed to collect a set of results
Consisting of both numerical scores and visual summaries (e.g. plots or tables). The results are motivated,
explained, and summarized in a LaTeX report. Finally, THE Al SCIENTIST generates an automated review,
according to current practice at standard machine learning conferences. The review can be used to either
improve the project or as feedback to future generations for open-ended scientific discovery.
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Our proposal: language model architecture discovery, finding better

(e.g., more efficient, performant, transparent,...), LM layer designs.
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Proposed a new algorithmic framework for discovery, allows us to address

technical issues, devise generalized algorithms.



Problem: Language model architecture discovery



Language model architecture design discovery: what?

» Finding improved layer designs for autoregressive language models.



Language model architecture design discovery: what?
» Finding improved layer designs for autoregressive language models.

Repeat N times

m
i
=3
@
o
=3
=
(]




Language model architecture design discovery: what?
» Finding improved layer designs for autoregressive language models.

Repeat N times

Buippequiz

def GPT(X**2):
X1z= (X#Z)
X2.Z=MHA(X1.**2)
X =X+X2

X3zZ= (X **Z)
X427 = Gated VILP(X3,#42)
X =X+X4

return X.Z



Language model architecture design discovery: what?
» Finding improved layer designs for autoregressive language models.
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return X.Z

At its core, a code discovery problem, similar goals to AutoML and

Neural architecture search (NAS), model full research pipeline.



Why is this an interesting problem?
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in particular, computation-related roadblocks.
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lll-formed search space: huge unbounded design space.
Complex sampling process: literature understanding, coding skills.

Expensive verification: pre-training/evaluation, resource bound.
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Language model architecture design discovery: how?

» Finding improved layer designs for auto-regressive language models.

Repeat N times
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designs? X4 - CatedMLPOG 2)

return X.Z

def GPT(X,**Z)

Continuous learning loop: Generate new model ideas, implement them
and verify through generative pre-training.

P Objective: Find designs that improve on end-task performance.
P Start small, innovate then scale, Ladder-of-scales (LoS) approach.
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The Genesys system: agents
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The Genesys system: distributed evolution
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The Genesys system
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run experiments and produce a report™""
design, scale = Experimenter(EvoTree)

report = Verifier(design.scale. V)
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Design
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Experiments at a glance: 1,162 discovered designs (1,062 fully verified),
86K dialogues, 2.76M lines of code, 1B processed tokens.
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Design tree: fully factorizable design space
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Designers: Planner, coder, observer
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Verifiers: budget sensitive scaling
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Have we made any discoveries yet?



A sketch of the

results: end

task performance

Blimp Wnli RTE WG CoLA SST2 WSC IS Mrpc avg.
Random  69.75 43.66 5271 48.78 50.00 49.08 49.82 50.03 31.62 49.49
GPT 9270 60.56 62.80 52.17 53.24 5413 5676 5531 68.38 61.78
Mamba2 8322 63.38 63.88 5122 5594 56.58 57.12 5385 67.89 6145
RWKV7 88.76 6197 6021 49.80 5425 5532 5457 57.00 68.38 61.14
RetNet 85.16 61.97 6135 5051 5629 5543 56.03 5495 56.37 59.78
TTT 86.13 63.38 5523 50.75 5555 5635 5493 5531 59.80 59.71
VQH 9437 59.15 5991 5028 5425 5356 53.83 4945 56.62 59.05
HMamba 83.74 64.79 61.35 5359 54.69 57.04 5640 5458 5931 60.61
Geogate  90.95 59.15 61.35 5272 5425 5532 5896 5495 68.63 61.81
Hippovq 87.96 50.70 5991 50.28 5425 5573 53.83 55.68 69.88 59.80
SRN 80.83 65.52 59.55 5075 5445 52.98 X 56.03 5495 61.03 59.57

Table 3: Performance of human designs and discovered mode
Parameters, S0B Tokens). Metrics indicate accuracy percentage

top and second best, italics denoting worst.

on various Benchmarks (350M

new designs

s4Bold and underlined denotes the



Result: Yields designs competitive with human ones



A sketch of the results: system and design analysis
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generation

system stability

[Valia  Attempts | Costs LFC
[Funt 92% | 2611 150(£185) 181 (x44)

NoFF  73% 3.0(£l7) 79(7.1)  75(+29)
NoPL  91% 2.6(£l1) 16.0(£208) 218 (£69)
NoOb. 89% 2.6 (£L1) 12.1(%20.1) 211 (£67)

NoSC  30% 24 (+10) 29(+47) 167 (£33)
Simple 6% | 1.1(£02) 03(£0.3) 49 (%15)

Library - N\ - - 220 (+136)

Table 3. Agent benchmiyk results. Bold and underlined denotes
the top and second best. “Ribrary” stands for our reference library
with 180 designs providing &ore block code.

successful code
generation rates



We can justify design, empirically and formally.



Please come to the poster to learn more



Thank you.
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