Language Modeling by Language Models with Genesys

Junyan Cheng*, Peter Clark, Kyle Richardson Allen Institute for AI, Dartmouth College*

Motivation

Autonomous scientific discovery

• Much recent excitement, though unclear goals and lack of standard discovery tasks to hill-climb on.

Language Model Architecture Discovery: What?

Autoregressive models

Citation network: LM architectures

Little understanding on how to effectively design and build largescale efficient discovery systems.

This work

- Look at challenging discovery problems in language model research, architecture design.
- Propose algorithmic framework for efficient discovery, proof-of-concept system called Genesys.
- > Block designs dictate how information flows in neural architectures.
- > While the transformer architecture remains the de-facto standard, large literature on alternative architectures. **Can we automatically discover new** designs building from this literature?

Retentive Network: A Successor to Transformer for Large Language Models

The Genesys system for architecture discovery **Core Genesys System Proposer-reviewer design loop** Review 🕼 Parent(s) from evolutionary tree LM Architecture Discovery Env. Genesys [async def genesys_evolve(EvoTree, KE, VE): X1,Z = RMSNorm(X,**Z X2,Z = MHA(X1,**Z) _ _ _ _ _ _ _ _ _ _ _ _ """Run distributed discovery loop""" design External Source Reference Library while budget: Designer

Have we made any discoveries yet?

	Blimp	Wnli	RTE	WG	CoLA	SST2	WSC	IS	Mrpc	avg.
Random	69.75	43.66	52.71	48.78	50.00	49.08	49.82	50.03	31.62	49.49
GPT	$\frac{92.70}{22.22}$	60.56	$\frac{62.80}{62.80}$	52.17	53.24	54.13	56.76	55.31	68.38	$\frac{61.78}{61.45}$
Mamba2	83.22	63.38	63.88	51.22	$\frac{55.94}{54.25}$	$\frac{56.58}{55.22}$	$\frac{57.12}{54.57}$	53.85	67.89	61.45 61.14
KWKV/ RetNet	85.70	61.97 61.97	61 35	<i>49.80</i> 50.51	54.25 56 29	55.52 55.43	56.03	57 .00 54 95	08.38 56 37	01.14 59 78
TTT	86.13	63.38	55.23	50.75	55.55	56.35	54.93	55.31	59.80	59.7 1
VQH	94.37	59.15	59.91	50.28	54.25	53.56	<i>53.83</i>	49.45	56.62	59.05
HMamba	83.74	64.79	61.35	53.59	54.69	57.04	56.40	54.58	59.31	60.61
Geogate	90.95	59.15	61.35	52.72	54.25	55.32	58.96	54.95	68.63	61.81
Hippovq	87.96	50.70	59.91	50.28	54.25	55.73	<i>53.83</i>	55.68	69.88	59.80
SRN	80.83	65.52	59.55	50.75	54.45	52.98	56.03	54.95	61.03	59.57

Table 3: Performance of human designs and discovered models on various Benchmarks (350M) Parameters, 50B Tokens). Metrics indicate accuracy percentages. Bold and underlined denotes the top and second best, italics denoting worst.

> Our system produces highly innovative new block designs that are competitive with state-of-the-art human architectures designs, showing the feasibility of automated discovery in this domain.

new designs

	Valid	Attempts	Costs	LFC
Full	92%	2.6 (±1.1)	15.0 (±18.5)	181 (±44)
No FF	73%	3.0 (±1.7)	7.9 (±7.1)	75 (±29)
No Pl.	91%	2.6 (±1.1)	16.0 (±20.8)	218 (±69)
No Ob.	89%	2.6 (±1.1)	12.1 (±20.1)	211 (±67)
No SC	30%	2.4 (±1.0)	2.9 (±4.7)	167 (±33)
Simple	6%	1.1 (±0.2)	0.3 (±0.3)	49 (±15)
Library	_	-	-	220 (±136

successful code generation rates

> System design decisions can be justified both empirically (e.g., *improved system stability, effective code generation)* as well as algorithmically (*exponentially improved bounds on rates of* generating correct code via Viterbi-style search).