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Safety example (Dai et al., 2024; Ji et al., 2024)
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* Important stage in LLM development (post-training), tuning from pairwise preferences

Direct preference alighment (DPA) approaches

* Recent approaches, such as DPO, take the form of closed-form loss functions, directly
tune models to offline preference data (no RL). Many variations.

* Problem: hard to interpret, understand relationships between variants, devise new

approaches. Original DPO loss
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Abstract RRHF [91] max (O, — ﬁ log mg (Yw|T) + ﬁ log g (y1 |:z)) — Aog 7o (yw|x)

While large-scale unsupervised language models (LMs) learn broad world knowl- el . .
edge and some reasoning skills, achieving precise control of their behavior is SLiC-HF [96] max (0’ 0 log (yw ‘:L') + log mg (yl |£L‘)) Alogmg (yw ‘:E )

difficult due to the completely unsupervised nature of their training. Existing — DPO [66] B 10g - (ﬂ 10g 70 (Y| ) 7o (y1|x) )
Tref

methods for gaining such steerability collect human labels of the relative quality of (Ywlz) B log Teer(1 1)
model generations and fine-tune the unsupervised LM to align with these prefer-

ences, often with reinforcement learning from human feedback (RLHF). However, 7o (Yw|z) o (y1|z) 1 2

RLHF is a complex and often unstable procedure, first fitting a reward model that IPO [6] (log Teet(Yw|Z) log Tet(yilz) E)

reflects the human preferences, and then fine-tuning the large unsupervised LM ® ®
using reinforcement learning to maximize this estimated reward without drifting CPO [88] —logo ( Blog Wg(yw | :L') — Blog g (yl | 33)) — Aog g (yw | .’L')
too far from the original model. In this paper we introduce a new parameterization

of the reward model in RLHF that enables extraction of the corresponding optimal _ To(Ywlzx) N o (yi]x)
policy in closed form, allowing us to solve the standard RLHF problem with only a KTO [29] Awo | Blog 06y — #ret | + Ao { zer — Blog 26 0y )
simple classification loss. The resulting algorithm, which we call Direct Prefer- where z,f = ]E(m y)~D [6 KL (7"9 (y |$) | |7Tref(y|m))]

ence Optimization (DPO), is stable, performant, and computationally lightweight, :

eliminating the need for sampling from the LM during fine-tuning or performing _ . Po(Ywl|z) po(yi|x)
significant hyperparameter tuning. Our experiments show that DPO can fine-tune ORPO [42] log Pe (yw |$) A log g log log 1—po(yi]|x) /) ?

LMs to align with human preferences as well as or better than existing methods.
Notably, fine-tuning with DPO exceeds PPO-based RLHF in ability to control sen-
timent of generations, and matches or improves response quality in summarization

and single-turn dialogue while being substantially simpler to implement and train. R-DPO [64] —logo ( Blog :: af((?;}w ||0;)) — Blog :ef((léll”z)) + (Y| — a|yi] ))

where po(yle) = exp (i log mo(yl2))

SimPO —logor (12 log mo(yu|2) — 12} log mo(wr]2) — 7)

From Meng et al. NeurlPS$ 2024

Understanding the DPA loss space

e Goals: formal framework for

characterizing the semantics of Preference loss f (DPO) Symbolic program

DPA losses, deriving new losses. Tmplies(
_ mo(Yw|x) m(ys|x) And(M(x,ys),Ref(x,yw)),
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* Approach: decompiling losses )
to symbolic programs, discrete
reasoning problems Compilation < » Decompilation
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From symbolic programs to losses (and back)

Compilation

Symbolic specification Boolean semantics Loss (via probabilistic logic, WMC)
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# losses double

to be a valid generation, it should " H mo(y | x) - H (1 =moly | x)) exponential in # vars
deem the winner to be valid too. w = M(x,y) w = —M(x,y) (loose bound)

Whenever the model deems the loser { ;X } .
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weight of logical interpretaion under policy y~mg(:|x)
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* How? Devised novel logic, compositional o
: : : compilation < Thm. decompilation
translation from DPA losses into that logic. _
Input Loss £orpo Preference structure P
. : P:= Implies(
* Preference structure: Boolean encoding, express | Iogo(log %‘3?9({"‘]"?) Gey), M0rye))
losses as symbolic programs + hard constraints. i i A
Loss Representation P
- Pi= MOGYw), Peiz= L Core semantics
CEUnl | P:= AndM(x,yw), Not(M(x,y;)))
Pei= 1 Po(yubx) (1= Po(11x)) SEM(p5) = N(x, yu) A —M(x,v1)
CPO . core semantic formula P (y1|x)(1—Pg(yw|x)) SEM(pZ) = M(x, ys) A =M(X, yw)

P := Implies(M(Xy:), M(X,yw))
.. one—true constraint

Pc := or(M(x,y; ), M(X,Yw)) Core loss equation Compositional translation
ORPO P := Implies(M(x,y;),M(X,Yw)) . . L. . .
.3 one-hot constraint Differing conditioning constraints

I:)C = XOR(M(Xayl)a M(X&y’w ))

Deriving new losses from first principles

* Why s this useful? high-level Semantic regions New losses, entailment
programming language for deriving new A
losses, modifying existing ones. M0, Ywr) A =M(%, i) M) N
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modify Novel loss

most constrained > least constrained
Implies(
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—logo| lo SN . .
: ( * b b= ”) * Loss lattice: structured representation of loss space
for exploration, small empirical case study.
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