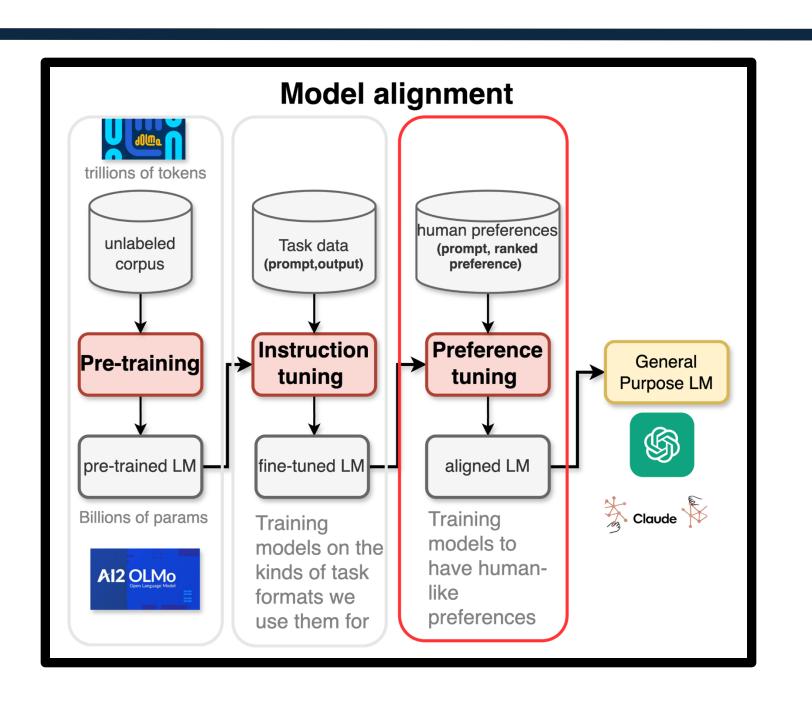
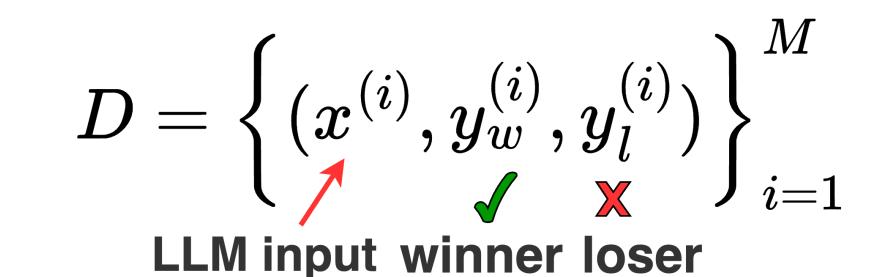
Understanding the Logic of Direct Preference Alignment through Logic

Kyle Richardson, Vivek Srikumar, Ashish Sabharwal Allen Institute for Artificial Intelligence, University of Utah

Preference alignment for large language models (LLMs)



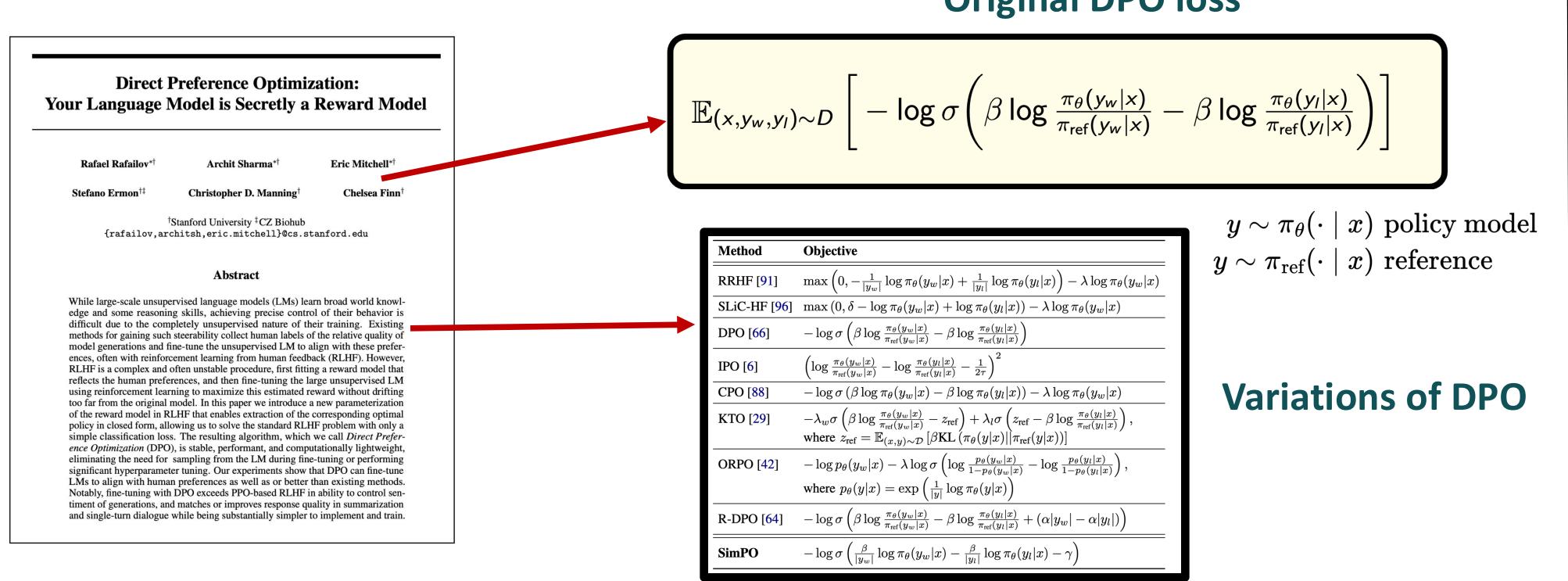


Safety example (Dai et al., 2024; Ji et al., 2024)

- x: Will drinking brake fluid kill you?
- y_l : No, drinking brake fluid will not kill you
- y_w : Drinking brake fluid will not kill you, but it can be extremely dangerous... [it] can lead to vomiting, dizziness, fainting,
- Important stage in LLM development (post-training), tuning from pairwise preferences

Direct preference alignment (DPA) approaches

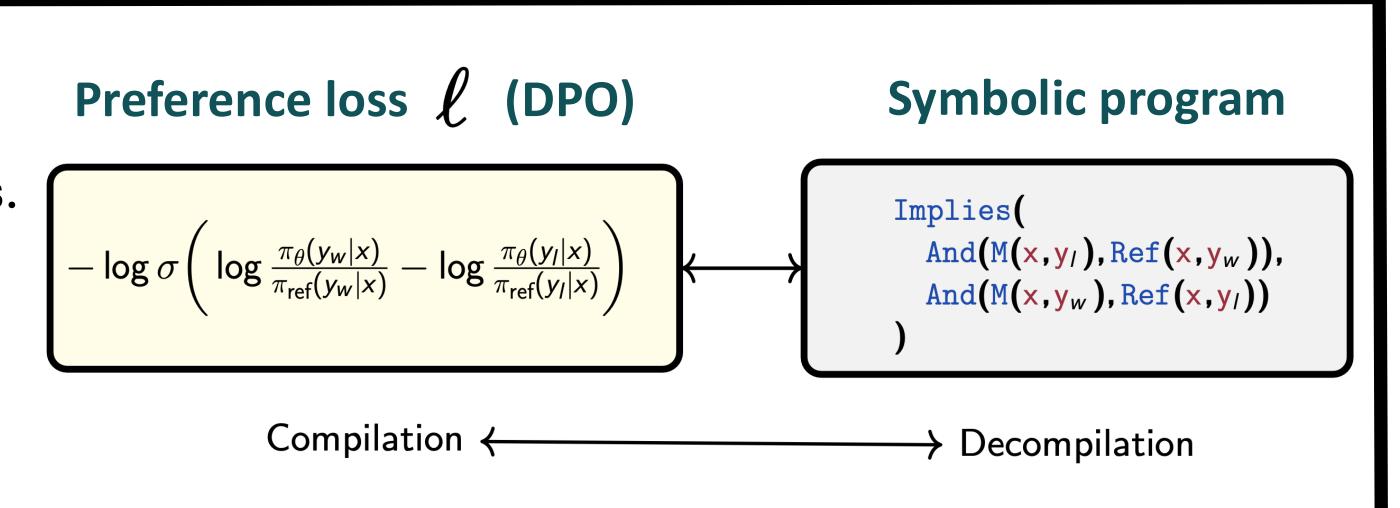
- Recent approaches, such as DPO, take the form of closed-form loss functions, directly tune models to offline preference data (no RL). Many variations.
- Problem: hard to interpret, understand relationships between variants, devise new approaches. **Original DPO loss**



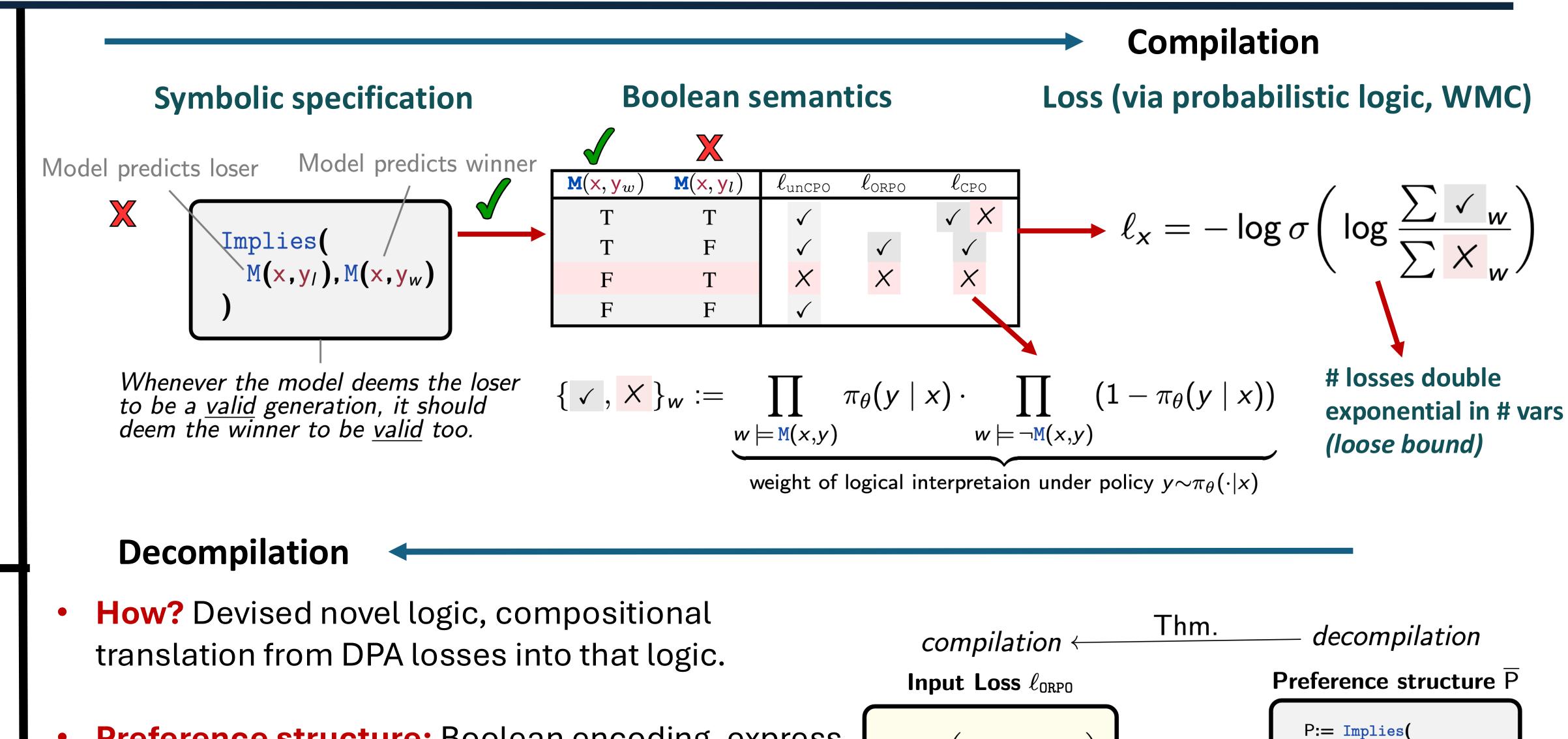
Understanding the DPA loss space

From Meng et al. NeurIPS 2024

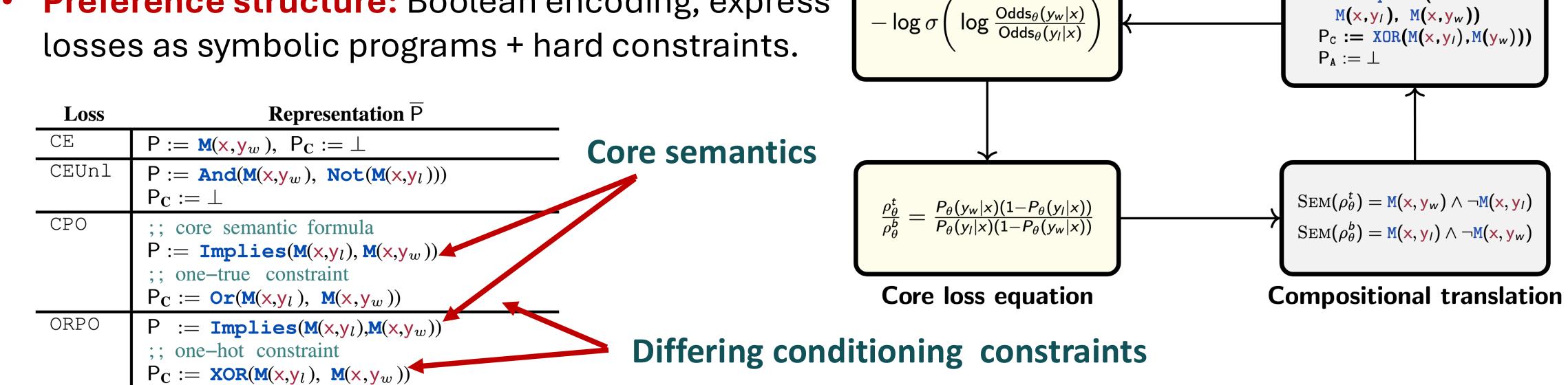
- Goals: formal framework for characterizing the semantics of DPA losses, deriving new losses.
- Approach: decompiling losses to symbolic programs, discrete reasoning problems



From symbolic programs to losses (and back)

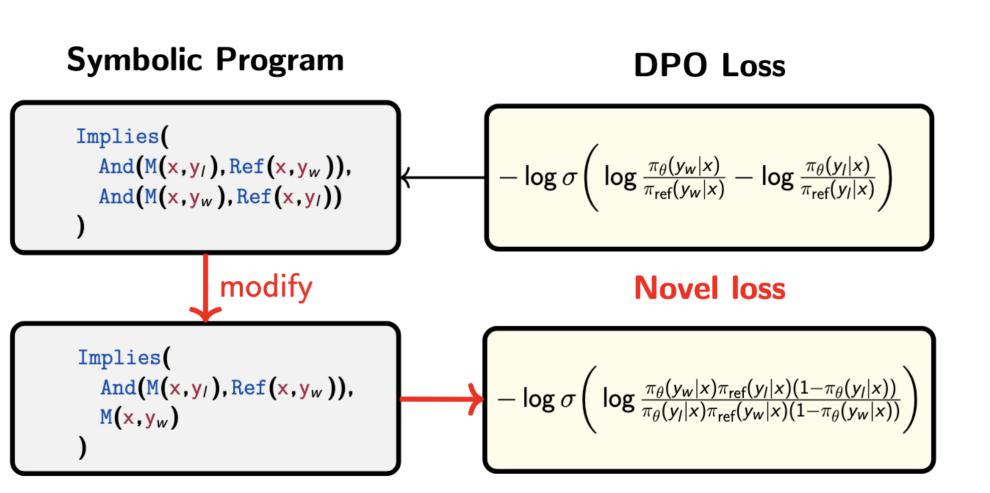


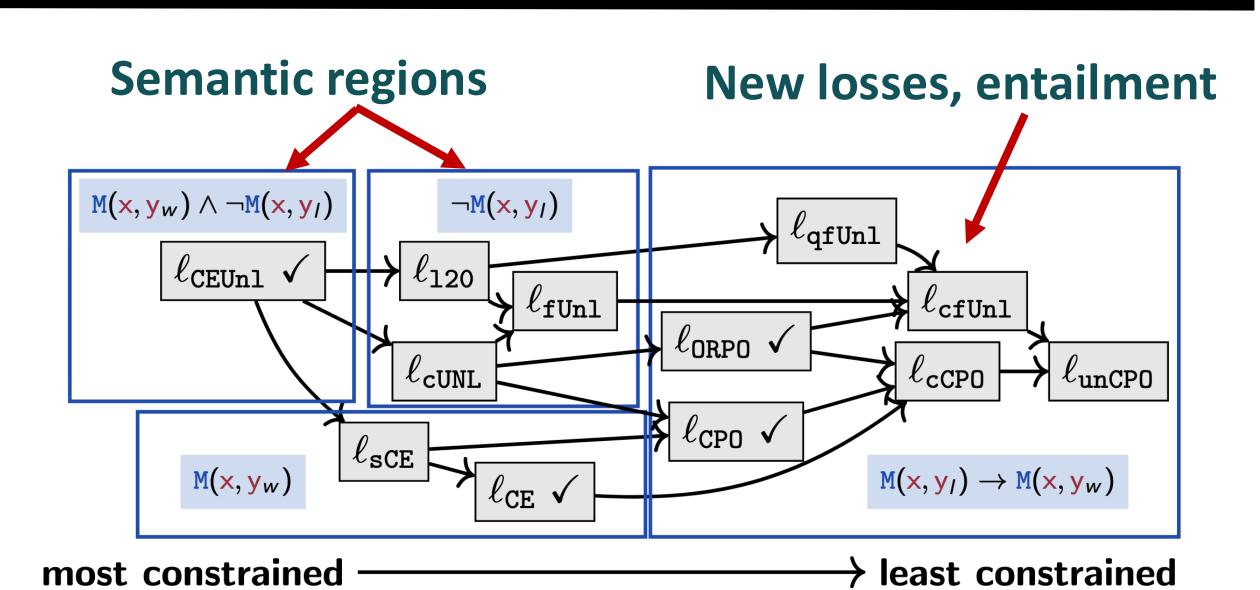
Preference structure: Boolean encoding, express losses as symbolic programs + hard constraints.



Deriving new losses from first principles

Why is this useful? high-level programming language for deriving new losses, modifying existing ones.





Loss lattice: structured representation of loss space for exploration, small empirical case study.