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Preference alignment in language models




Offline preference alignment in a nutshell

P Given an offline or static dataset consisting of pairwise preferences for
input x:
DP:{( 7yw7.yl ))}
i=1

optimize a policy model y ~ mg(- | x) (LLM) to such preferences.
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P Given an offline or static dataset consisting of pairwise preferences for
input x:
DP:{( 7.yw7.yl ))}
i=1

optimize a policy model y ~ mg(- | x) (LLM) to such preferences.

Safety example (Dai et al., 2024; Ji et al., 2024)

x : Will drinking brake fluid kill you?
i = No, drinking brake fluid will not kill you

w : Drinking brake fluid will not kill you, but it can be extremely
dangerous... [it] can lead to vomiting, dizziness, fainting, ....



Direct preference alignment approaches
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Abstract

While large-scale unsupervised language models (LMs) learn broad world knowl-
edge and some reasoning skills, achieving precise control of their bchxvlor is
difficult due to the completely unsupervised nature of their training.
‘methods for gaining such steerability collect human labels of the relative qnaluy ot
model generations and fine-tune the unsupervised LM to align with these prefer-
ences, often with reinforcement learning from human feedback (RLHF). However,
RLHF is a complex and often unstable procedure, first fitting a reward model that
reflects the human preferences, and then fine-tuning the large unsupervised LM
using reinforcement learing to maximize his estimated eward without drifing
100 far from the original model. In this paper we introduce a new parameterization
ofth reward model in RLHF tha enables extraction of the corresponding optimal
policy in closed form, allowing us to solve the standard RLHF problem with only a
simple classification loss. The resulting algorithm, which we call Direct Prefer-
ence Optimization (DPO), is stable, performant, and computationally lightweight,
eliminating the need for sampling from the LM during fine-tuning or performing
significant hyperparameter tuning. Our experiments show that DPO can fine-tune
LMs to align with human preferences as well as or better than existing methods.
Notably, fine-tuning with DPO exceeds PPO-based RLHF in ability to control sen-
timent of generations, and matches or improves response quality in summarization
and single-turn dialogue while being substantially simpler to implement and train.




Closed-form loss function
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Do these losses have an internal logic?
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How are these approaches related semantically?



Formalize as discrete reasoning problems



The main technical problem we study

Loss Function
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The main technical problem we study

Loss Function
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» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?



The main technical problem we study

Symbolic Program Loss Function
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High-level model behavior

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?
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» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?

1. Compilation: Translating specifications into loss, well studied.



The main technical problem we study

Symbolic Program Loss Function
Implies(
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» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?

1. Compilation: Translating specifications into loss, well studied.

2. Decompilation:Losses to specifications (inverse), less explored.



How does this work? Neuro-symbolic techniques



Why is this useful to do?



Deriving new losses symbolically, from first principles

Symbolic Program DPO Loss
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Deriving new losses symbolically, from first principles
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P Basic questions: Allows us to better understand the size and structure of

the target loss space.



question: How many DPO variants are there?



answer: ~4.3 billion variants of DPO (loose bound)



question: How is this space structured?



Semantic neighborhoods

Entailment

Known losses Novel losses

M(x, Yw) A —M(x, 1)

—M(x, y1)

ZunCPO

M(x, Yo )

Leg v

M(x, y1) = M(X, Yu)

most constrained

» least constrained

Loss lattice, semantic structure of space, ordering.




Blueprint for future empirical exploration of loss space
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Abstract

Recent direct preference alignment algorithms
(DPA), such as DO, have shown great promise in
aligning large language models to human prefer-
ences. While this has motivated the development
of many new variants of the original DEO loss,
understanding the differences between these re-
cent proposals, as well as developing new DPA
loss functions, remains difficult given the lack
of a technical and conceptual framework for rea-
oning shou he undelying emaalsoftese
algorithms. In this pay attempt to remedy
this by formalizing DPA losses i terms of dis-
Specifically, we ask

Symbolic Programs Loss functions
Drcompiation

Semaatis P |- P

Figure 1. Can we uncover the hidden logic of DPO? Here we show

ehavior, along with
modified version that we can compile nto a novel DPO variant
We sty bow o st etwen tes wospace o bt -

derive a symbolic program that characterizes its
semantics? We propose a novel formalism for
characterizing preference losses for single model
and reference model based approaches, and iden-
tify symbolic forms for a number of commonly
used DPA variants. Further, we show how this for-
‘mal view of preference learning sheds new light
on both the size and structure of the DPA loss land-
scape, making it possible to not only rigorously
characterize the relationships between recent loss
proposals but also 10 systematically explore the
landscape and derive new loss functions from first
principles. We hope our framework and findings
will help provide useful guidance t those work-
ing on human AI alignment.

1. Introduction

Symbolic logic has long served s the de-facto language for
expressing complex knowledge throughout computer sci-
ence (Halpem etal., 2001), lmlmlln} in Al (McCarthy etal.,
1960; Nilsson, 1991) and McCulloch & Pitts,
1943), owing 1 its clean semantics mbolic approaches to
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reasoning that are driven by declarative knowledge, in sharp
contrast o purely machine learning-based aj es, have.
the advantage of allowing us 10 reason transparently about
the behavior and correctness of the resulting systems. In this
paper we focus on the broad question: Can the declarative
approach be leveraged 10 better understand and formally
specify algorithms for large language models (LLMs)?

?
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(Ouyang et al, 2022; Wang et al., 2023). While there has.
been much recent work on algorithmic variations of DPO
(Azar et al., 2024; Hong et al, 2024; Meng et al., 2024) that
mocify o addnew ems 0 e rigoal s, undemanding
the differences betw well as com-
ing up with new variants, remains a hmmd.\hk challenge
due 10 the lack of a conceptual and technical framework for
reasoning about their underlying semantics.

new proposals,

Our study attempis to remedy this problem by formalizing.
the corresponding loss functions in terms of log
er the q

ying to
ion: Given an existing loss function, such
0 (see Figure 1), can we derive a symbolic expres-
sion that captures the core semantics of that loss function
(e, one that we can then systematically compile back into
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