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The divide: logic vs. deep learning

Classical logic: designed for modeling closed systems (Peano axioms).

∀x(0 ≠ Succ(x))
∀x, y(Succ(x) = Succ(y)) → x = y
∀x(x + 0 = x)
∀x, y(x + Succ(y) = Succ(x + y))
∀x(x ⋅ 0 = 0)
∀∀x, y(x ⋅ Succ(y) = x ⋅ y + x)

Theorem: ∀x, y(x ⋅ y = Succ(0) → x = Succ(0) ∧ y = Succ(0))

deep learning: Used for modeling open systems, situations involving

partial information, making (fast) predictions vs. explicit reasoning.

Premise: A man with a hat is riding his bicycle down the street.
Hypothesis: A person is moving with the help of their legs.

Prediction: Entailment

Premise: A person is moving with the help of their legs.
Hypothesis: A person is moving

Prediction: Entailment
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Two conceptual tools for relating logic and deep learning
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1. Predictions-as-propositions

x1: A man with a hat is riding his bicycle down the street.
x2: A person is moving with the help of their legs.
Prediction: Entailment

x2: A person is moving with the help of their legs.
x3: A person is moving
Prediction: Entailment

[Notation from

x1 [SEP] x2 Model Entailment

symbolically: E(x1, x2)

x2 [SEP] x3 Model

symbolically: E(x2, x3)

Proposition Meaning
E(x, y) x entails y
C(x, y) x contradicts y

[Notation from
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1. Predictions-as-propositions

x1 [SEP] x2

input

Model Entailment

prediction

symbolically: E(x1, x2)

x2 [SEP] x3

input

Model Entailment

prediction

symbolically: E(x2, x3)

Why is this helpful?

constraints (our expectations)

E(x1, x2) ∧ E(x2, x3) ∧C(x1, x3)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

model predictions
∀x , y , z(E(x , y) ∧ E(y , z) → E(x , z)) satisfies constraints?
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Distinguishing good, bad and very bad model predictions
constraints (our expectations)

Minervini and Riedel (2018); Li et al. (2019)

E(x1, x2) ∧ E(x2, x3) ∧C(x1, x3)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

model predictions

∀x , y , z(E(x , y) ∧ E(y , z) → E(x , z))
∀x , y , z(E(x , y) ∧C(y , z) → C(x , z))

∀x , y(C(x , y) → C(y , x))
satisfies constraints?

The different predictions a model (or set of models) might make:

x1 ∶ A man with a hat is riding his bicycle down the street entails x2 ∶ A person

is moving with the help of their legs, x3 ∶ entails A person is moving

predictions predictions correct predictions consistent

E(x1, x2) ∧ E(x2, x3) ∧ E(x1, x3) ✓ (3/3) ✓ (3/3)

C(x1, x2) ∧ C(x2, x3) ∧ C(x1, x3) × (0/3) ✓ (3/3)

E(x1, x2) ∧ C(x2, x3) ∧ C(x1, x3) × (1/3) ✓ (3/3)

E(x1, x2) ∧ E(x2, x3) ∧ C(x1, x3) × (2/3) × (0/3)

Thinking of predictions as symbolic objects; brings rigor to interpreting

model behavior, can clarify what we mean by ‘good‘ vs. ‘bad‘.
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Annotations-as-logical-specifications: what we expect

Question: (q) Where is a frisbee in play likely to be? (m) 1) air 2) ...

Prediction (q,m → a): (a) ”air”
Prediction (q,m → e, a): (e) ”A frisbee floats on air”, ”air”
Prediction (q,m → p): (p) ”A frisby in play is likely to be in the air”

(Labeled) datasets specify what we want a model to do and learn.

instance meaning proposition (logic)
(q,m, a) a is the correct answer to q in m Q(q, a)
(q,m, e, a) e is the correct explanation of q with answer a Ex(q, e + a)
(q,m, p) p is the correct proposition corresponding to q

and a.

P(q, p)

We can also think of annotations as logical propositions and formulae.

Q(q, a) ∧ Ex(q, e + a) ∧P(q,p)
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´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

should make correct predictions

∧ ∀q,p(P(q,p) → Bel(p))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

should believe propositions

∧ ∀q, a, e(Ex(q, e + a) → Q(q + e, a))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Answer should be invariant given its explanation

Why is this helpful? Be more clear about what we expect, understand

gap between what we expect and what we actually do, imagine new tasks.
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Conceptual Tools: Predictions-as-propositions,
Annotations-as-specifications

Thinking of model predictions as symbolic objects; annotations and our

expectations as logical formulas.

formal specification

complex system behavior
(Logical Formulae)

Logical Formulae meets specification?

note: These are just conceptual tools, not particularly useful yet.
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Technical Tool: Multi-valued Logic and the ‘Logic as Loss
Function‘ approach (see review in Marra et al. (2021)).
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Multi-valued logic

Logical propositions come in different flavors

Boolean Propositions P ∈ {0, 1}
(Probabilistic) Boolean Propositions P is 1 with prob. p ∈ [0, 1] (0 with prob. 1 − p)

non-classical logic
(Finite-)N-Valued Propositions P ∈ {0, 1, ...N}
Real-Valued (Fuzzy) Propositions P ∈ [0, 1] (truth degree),

Fuzzy Logic: Logical operators (∧,∨,¬,→) are turned into real-valued

functions (t-norms); generalizes Boolean logic to continuous values.

see Li et al. (2019); Grespan et al. (2021)
Boolean Logic Product  Lukasiewisz Gödel

T-norm P1 ∧ P2 P1 ⋅ P2 max(0,P1 + P2 − 1) min(P1,P2)
T-conorm P1 ∨ P2 P1 + P2 − P1 ⋅ P2 min(1,P1,+P2) max(P1,P2)
Negation ¬P 1 − P 1 − P 1 − P

Residuum P1 → P2 min(1,
P2
P1

) min(1, 1 − P1 + P2) P2

Note: At the extremes 0 and 1, work exactly as classical counterparts.
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T-norm P1 ∧ P2 P1 ⋅ P2 max(0,P1 + P2 − 1) min(P1,P2)
T-conorm P1 ∨ P2 P1 + P2 − P1 ⋅ P2 min(1,P1,+P2) max(P1,P2)
Negation ¬P 1 − P 1 − P 1 − P

Residuum P1 → P2 min(1,
P2
P1

) min(1, 1 − P1 + P2) P2

Note: At the extremes 0 and 1, work exactly as classical counterparts.

12



Turning Specifications into Loss Functions

Boolean Logic Product  Lukasiewisz Gödel
T-norm P1 ∧ P2 P1 ⋅ P2 max(0,P1 + P2 − 1) min(P1,P2)

T-conorm P1 ∨ P2 P1 + P2 − P1 ⋅ P2 min(1,P1,+P2) max(P1,P2)
Negation ¬P 1 − P 1 − P 1 − P

Residuum P1 → P2 min(1,
P2
P1

) min(1, 1 − P1 + P2) P2

Why are these (T-norms) useful?

Q(q, a) ∧ Ex(q, e) ∧P(q,p)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

should make correct predictions

∧ (P(q,p) → Bel(p))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

should believe propositions

∧ (Ex(q, e + a) → Q(q + e, a))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Answer should be invariant given its explanation

Specifications

Differentiable Loss Function

(translation to T-norms)

Lossmodel(Q(q, a) ∧ Ex(q, e) ∧ ...) = ∑
P∈{Q(q,a),Ex(q,e),...}

− log pmodel(P)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

fuzzy truth degree

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Product T-norm (− log prob.)
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Training Objectives as Logical Specifications
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Atomic predictions
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Answer should be invariant given its explanation
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Additional Constaints

We can think of a (supervised) dataset D = {(xj , yj)}Nj=0 as a set of true

atomic propositions propositions Dp = {Y1, ...,YN} with constraints C .

Goal Logical Formula Loss Function (Product)
Make Correct
Predictions

⋀
Y∈Dp

Y ∑
Y∈Dp

− log pmodel (Y)

Believe your
propositions

⋀
P(q,p)∈Dp

P(q, p) → Bel(p) ∑
P(q,p)∈Dp

ReLU(log pmodel (P(q, p)) − log pmodel (Bel(p)))

Observation: Translating product conjunction to negative log space
yields ordinary cross-entropy loss.
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Additional Constaints

We can think of a (supervised) dataset D = {(xj , yj)}Nj=0 as a set of true

atomic propositions propositions Dp = {Y1, ...,YN} with constraints C .

Goal Logical Formula Loss Function (Product)
Make Correct
Predictions

⋀
Y∈Dp

Y ∑
Y∈Dp

− log pmodel (Y)

Believe your
propositions

⋀
P(q,p)∈Dp

P(q, p) → Bel(p) ∑
P(q,p)∈Dp

ReLU(log pmodel (P(q, p)) − log pmodel (Bel(p)))

Observation: There is often a large gap between what we train models to
do (e.g., make correct predictions) and we expect models to know.
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Logic as Loss Function, Logic in the Weights

Logical constraints serve as regularizer, soft constraints over hypothesis

space that favor solutions closer to knowledge (undirected models).

Loss = LossCE
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

ordinary loss

+λLossconstraints
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
logical constraints

E(x1, x2) ∧ E(x2, x3) ∧C(x1, x3)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

model predictions

∀x , y , z(E(x , y) ∧ E(y , z) → E(x , z))
∀x , y , z(E(x , y) ∧C(y , z) → C(x , z))

∀x , y(C(x , y) → C(y , x))
Lossconstraints

t-norms

predictions predictions
correct

predictions
consistent

prediction
loss

constraint
loss

E(x1, x2)∧E(x2, x3)∧E(x1, x3) ✓ (3/3) ✓ (3/3) low low

C(x1, x2)∧C(x2, x3)∧C(x1, x3) × (0/3) ✓ (3/3) high low

E(x1, x2)∧C(x2, x3)∧C(x1, x3) × (1/3) ✓ (3/3) high low

E(x1, x2)∧E(x2, x3)∧C(x1, x3) × (2/3) × (0/3) medium high

Observation: constraint loss doesn’t contribute much outside of

penalizing the last case; need to be carefully constructed.
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Practical concerns: ensure consistency loss doesn’t overwhelm your

prediction loss; many tricks for this (loss weighting λ, annealing).
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Does this Help?

▸ Li et al. (2019) apply to NLI, focus on basic order relations between inference

types (transitivity, symmetry), study different t-norm approaches.
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Does this Help?

▸ NLP: NLI (Minervini and Riedel, 2018; Li et al., 2019), question-answering (Asai and

Hajishirzi, 2020), relation extraction (Rocktäschel et al., 2015), other (Grespan et al., 2021).

Can significantly improve consistency and training efficiency, mixed

results on improving end-task performance, though.

▸ Widely used elsewhere in neural-symbolic modeling (see Marra et al. (2021)),

many open technical issues (see Grespan et al. (2021)).
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An Alternative Tool: Weighted Model Counting

(The proper way to do things!)
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A Probabilistic Approach

▸ The semantics of Fuzzy logic has issues, not easy to translate back to

ordinary Boolean logic, not amenable to probabilistic inference.

Boolean Propositions P ∈ {0, 1}
(Probabilistic) Boolean Propositions P is 1 with prob. p ∈ [0, 1] (0 with prob. 1 − p)
Real-Valued (Fuzzy) Propositions P ∈ [0, 1], truth degree t(P)

Example: Assume we have a proposition P with a weight 0.3 and we
want to get a weight for P ∧P (see (Marra et al., 2021, p43))

p(P ∧P) = p(P) (possible world semantics)

t(P ∧P) = t(P) × t(P) = 0.15 (product t-norm semantics)
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A Probabilistic Approach: Possible World Semantics

Three propositions: 0.9 ∶∶ P1 (A dog is a type of mammal), 0.8 ∶∶ P2 (A

mammal is a type of animal), 0.45 ∶∶ P3 (A bulldog is a dog)

world W P1 P2 P3 p(W )
W1 0 0 0 (0.1 × 0.2 × 0.55) = 0.01
W2 1 1 1 (0.9 × 0.8 × 0.45) = 0.32
W3 0 0 1 (0.1 × 0.2 × 0.45) = 0.009
W4 0 1 1 (0.1 × 0.8 × 0.45) = 0.036
W5 1 0 1 (0.9 × 0.2 × 0.45) = 0.081
W6 1 1 0 (0.9 × 0.8 × 0.55) = 0.39
W7 0 1 0 (0.1 × 0.8 × 0.55) = 0.04
W8 1 0 0 (0.9 × 0.2 × 0.55) = 0.08

p(W ) = ∏
P∈W 1

p(P)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
true in W , W 1

× ∏
P∈W 0

1 − p(P

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
false in W , W 0

)

pquery (P) = ∑
W s.t. W⊧P

p(W )
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A Probabilistic Approach: Weighted Model Counting

▸ Querying: generalizes to any propositional formula α and reducible to

the problem of Weighted Model Counting (WMC) (Chavira and Darwiche, 2008)

pquery (α) = ∑
W s.t. W⊧α

p(W )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
WMC

P1 → P2 ∧P2 → P3

constraints

world W P1 P2 P3 model? p(W )
W1 0 0 0 yes (0.1 × 0.2 × 0.55) = 0.01
W2 1 1 1 yes (0.9 × 0.8 × 0.45) = 0.32
W3 0 0 1 yes (0.1 × 0.2 × 0.45) = 0.009
W4 0 1 1 yes (0.1 × 0.8 × 0.45) = 0.036
W5 1 0 1 no 0.0
W6 1 1 0 no 0.0
W7 0 1 0 no 0.0
W8 1 0 0 no 0.0

#SAT ∶ 4 WMC: 0.375
p(P3) = 0.365/(1 − 0.365)

Other: MARG or SUCC inference, query probability, (WMC),

MPE/MAP, most likely world (MaxSAT) d.
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Other: MARG or SUCC inference, query probability), (WMC),

MPE/MAP, most likely world (MaxSAT) (De Raedt and Kimmig, 2015).
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A Probabilistic Approach: Weighted Model Counting

▸ Querying: generalizes to any propositional formula α and reducible to

the problem of Weighted Model Counting (WMC) (Raedt et al., 2016)

pquery (α) = ∑
W s.t. W⊧α

p(W )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
WMC

Efficient marginal computations through knowledge compilation (Darwiche

and Marquis, 2002), many open-source compilers and tools.

α

Weighted Propositions Weighted Formula Arithmetic Circuit pquery(α)

Logical Rules

compilation efficient computation

from pysdd . sdd i m p o r t SddManager , Vtree , WmcManager # p i p i n s t a l l PySDD
v t r e e = V t r e e ( v a r c o u n t =4, v a r o r d e r = [ 2 , 1 , 4 , 3 ] , v t r e e t y p e=” b a l a n c e d ” )
sdd = SddManager . f r o m v t r e e ( v t r e e ) ; a , b , c , d = sdd . v a r s

a l p h a = ( a & b ) | ( b & c ) | ( c & d )
wmc = a l p h a . ( log mode=F a l s e ) ; wmc . s e t l i t e r a l w e i g h t ( a , 0 . 5 )
p r i n t ( f ” Weighted Model Count : {wmc . p r o p a g a t e ()} ” )
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Logic as Loss Function: probabilistic variant

▸ Provides an alternative to fuzzy semantics, compute marginal

probabilities of formulas α over propositions P1, ..,Pn

Lossα ∝ − log ∑
W s.t. W⊧α

∏
P∈W 1

pmodel(P) ⋅ ∏
P∈W 0

1 − pmodel(P

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
parameterized by our model

)

α

DL Model Weighted Propositions Weighted Formula Lossα

Logical Rules

compilation and computation
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parameterized by our model

)

semantic loss function (Xu et al., 2018)

The semantic loss is proportional to a negative logarithm of the probability
of generating a state that satisfies the constraint when sampling values
according to p. Hence, it is the self-information (or ‘surprise’) of obtaining
an assignment that satisfies the constraint...

As before, often used as undirected model (alternative (Manhaeve et al., 2018)):

Loss = Lossprediction

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ordinary loss

+ λLossα
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

logical constraints
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The NLI Example Again

x1: A man with a hat is riding his bicycle down the street.
x2: A person is moving with the help of their legs.
Prediction: Entailment

x2: A person is moving with the help of their legs.
x3: A person is moving
Prediction: Entailment

0.95 ∶∶ E(x1, x2) ∧ 0.85 ∶∶ E(x2, x3) ∧ 0.75 ∶∶ C(x1, x3) ≡ ¬E(x1, x3)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(weighted) model predictions

∀x , y , z(E(x , y) ∧ E(y , z) → E(x , z))
∀x , y , z(E(x , y) ∧C(y , z) → C(x , z))

∀x , y(C(x , y) → C(y , x))

αconstraints (before grounding)

world W E(x1, x2) E(x2, x3) E(x1, x3) W ⊧ α p(W )
W1 0 0 0 yes (0.05 × 0.15 × 0.75) = 0.005
W2 1 1 1 yes (0.95 × 0.85 × 0.25) = 0.201
W3 0 0 1 yes (0.05 × 0.15 × 0.25) = 0.001
W4 0 1 1 yes (0.05 × 0.85 × 0.25) = 0.010
W5 1 0 1 no (0.95 × 0.15 × 0.25) = 0.03
W6 1 1 0 no (0.95 × 0.85 × 0.75) = 0.60
W7 0 1 0 yes (0.05 × 0.85 × 0.75) = 0.03
W8 1 0 0 yes (0.95 × 0.15 × 0.75) = 0.10

p(αconstraints) ≈ 0.34

Ordinary loss ends up being special case again: − log p(αpred) = LossCE
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(weighted) model predictions, αpred=E(x1,x2)∧E(x2,x3)∧C(x1,x3)

∀x , y , z(E(x , y) ∧ E(y , z) → E(x , z))
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world W E(x1, x2) E(x2, x3) E(x1, x3) W ⊧ α p(W )
W1 0 0 0 no (0.05 × 0.15 × 0.75) = 0.005
W2 1 1 1 no (0.95 × 0.85 × 0.25) = 0.201
W3 0 0 1 no (0.05 × 0.15 × 0.25) = 0.001
W4 0 1 1 no (0.05 × 0.85 × 0.25) = 0.010
W5 1 0 1 no (0.95 × 0.15 × 0.25) = 0.03
W6 1 1 0 no violates constraints
W7 0 1 0 no (0.05 × 0.85 × 0.75) = 0.03
W8 1 0 0 no (0.95 × 0.15 × 0.75) = 0.10

p(αconstraints ∧αpred) = 0.0

Ordinary loss ends up being special case again: − log p(αpred) = LossCE
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W3 0 0 1 no (0.05 × 0.15 × 0.25) = 0.001
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W5 1 0 1 no (0.95 × 0.15 × 0.25) = 0.03
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p(αpred) = 0.60

Ordinary loss is again special case: − log p(αpred) = Lossordinary loss
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Conclusion

▸ Neural Symbolic modeling, focusing on the ‘logic as loss function‘ and

‘logic in weights‘ approaches, undirected models

conceptual tools connecting logic and DL: thinking of model

predictions as symbolic objects, annotations as logical specifications

technical tools: fuzzy and soft logic relaxations, model counting

(probabilistic approach), translating logic to loss functions.

Still a niche area in NLP, many exciting topics to explore.
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Credits and Additional Reading

▸ Many ideas and examples taken from the following (beyond what’s cited):

Guy Van den Broeck et al. tutorial:

https://web.cs.ucla.edu/∼guyvdb/talks/IJCAI16-tutorial/, (Fierens

et al., 2015; Raedt et al., 2016; Manhaeve et al., 2021), logic as loss

function title and many examples taken from Marra et al. (2021),

essential reading!, peano axioms:

https://en.wikipedia.org/wiki/Peano axioms

Additional resources: Problog: https://dtai.cs.kuleuven.be/problog/,

PySDD: https://github.com/wannesm/PySDD, Pylon:

https://pylon-lib.github.io/
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Thank you.
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