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A motivating example
Toy Student Database

Student(John)
Student(Mary)
Student(Sue)
Teacher(Julia)

Takes(John,C101)
Takes(Mary,C101)
Takes(Mary,C301)
Takes(Sue,C301)
Teaches(Julia,C101)

Math(C101)
Math(C301)

Math-Teacher(X) ← Math(Y) & not Teaches(X,Y)
Non-Math-major(X) ← Math(Y) & not Takes(X,Y)

Example queries: Is John taking C101?
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A motivating example
Toy Student Database

Student(John)
Student(Mary)
Student(Sue)
Teacher(Julia)

Takes(John,C101)
Takes(Mary,C101)
Takes(Mary,C301)
Takes(Sue,C301)
Teaches(Julia,C101)

Math(C101)
Math(C301)

Math-Teacher(X) ← Math(Y) & not Teaches(X,Y)
Non-Math-major(X) ← Math(Y) & not Takes(X,Y)

Example queries: Is John taking C101? yes
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A motivating example
Toy Student Database

Student(John)
Student(Mary)
Student(Sue)
Teacher(Julia)

Takes(John,C101)
Takes(Mary,C101)
Takes(Mary,C301)
Takes(Sue,C301)
Teaches(Julia,C101)

Math(C101)
Math(C301)

Math-Teacher(X) ← Math(Y) & Teaches(X,Y)
Non-Math-major(X) ← Math(Y) & not Takes(X,Y)

Example queries: What courses are taken by Mary? {C101, C301}
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A motivating example
Toy Student Database

Student(John)
Student(Mary)
Student(Sue)
Teacher(Julia)

Takes(John,C101)
Takes(Mary,C101)
Takes(Mary,C301)
Takes(Sue,C301)
Teaches(Julia,C101)

Math(C101)
Math(C301)

Math-Teacher(X) ← Math(Y) & Teaches(X,Y)
Non-Math-major(X) ← Math(Y) & not Takes(X,Y)

Example queries: Is John taking C301? as far as we know, no
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A motivating example
Toy Student Database

Student(John)
Student(Mary)
Student(Sue)
Teacher(Julia)

Takes(John,C101)
Takes(Mary,C101)
Takes(Mary,C301)
Takes(Sue,C301)
Teaches(Julia,C101)

Math(C101)
Math(C301)

Math-Teacher(X) ← Math(Y) & Teaches(X,Y)
Non-Math-major(X) ← Math(Y) & not Takes(X,Y)

Example queries: Is C505 not a math course? as far as we know, yes

2



A motivating example
Toy Student Database

Student(John)
Student(Mary)
Student(Sue)
Teacher(Julia)

Takes(John,C101)
Takes(Mary,C101)
Takes(Mary,C301)
Takes(Sue,C301)
Teaches(Julia,C101)

Math(C101)
Math(C301)

Math-Teacher(X) ← Math(Y) & Teaches(X,Y)
Non-Math-major(X) ← Math(Y) & not Takes(X,Y)

Example queries: Is Julia not a student? as far as we know, yes
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A motivating example
Toy Student Database

Student(John)
Student(Mary)
Student(Sue)
Teacher(Julia)

Takes(John,C101)
Takes(Mary,C101)
Takes(Mary,C301)
Takes(Sue,C301)
Teaches(Julia,C101)

Math(C101)
Math(C301)

Math-Teacher(X) ← Math(Y) & Teaches(X,Y)
Non-Math-major(X) ← Math(Y) & not Takes(X,Y)

Operationalizing not and as far as we know in traditional databases
(Codd, 1970): Assume that all tuples not in the database are false.
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A motivating example
Toy Student Database

Student(John)
Student(Mary)
Student(Sue)
Teacher(Julia)

Takes(John,C101)
Takes(Mary,C101)
Takes(Mary,C301)
Takes(Sue,C301)
Teaches(Julia,C101)

Math(C101)
Math(C301)

Math-Teacher(X) ← Math(Y) & Teaches(X,Y)
Non-Math-major(X) ← Math(Y) & not Takes(X,Y)

Logic Programming: Not all information can not be read by direct
inspection, non-unit clauses. (Lloyd, 2012)

2



A motivating example
Toy Student Database

Student(John)
Student(Mary)
Student(Sue)
Teacher(Julia)

Takes(John,C101)
Takes(Mary,C101)
Takes(Mary,C301)
Takes(Sue,C301)
Teaches(Julia,C101)

Math(C101)
Math(C301)

Math-Teacher(X) ← Math(Y) & Teaches(X,Y)
Non-Math-major(X) ← Math(Y) & not Takes(X,Y)

Logic Programming: Not all information can not be read by direct
inspection, non-unit clauses. (Lloyd, 2012)
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A motivating example
Toy Student Database

Student(John)
Student(Mary)
Student(Sue)
Teacher(Julia)

Takes(John,C101)
Takes(Mary,C101)
Takes(Mary,C301)
Takes(Sue,C301)
Teaches(Julia,C101)

Math(C101)
Math(C301)

Math-Teacher(X) ← Math(Y) & Teaches(X,Y)
Non-Math-major(X) ← Math(Y) & not Takes(X,Y)

Problem: not/as far as we know, not immediately amenable to classical
logic.

2



A motivating example
Toy Student Database

Student(John)
Student(Mary)
Student(Sue)
Teacher(Julia)

Takes(John,C101)
Takes(Mary,C101)
Takes(Mary,C301)
Takes(Sue,C301)
Teaches(Julia,C101)

Math(C101)
Math(C301)

Math-Teacher(X) ← Math(Y) & Teaches(X,Y)
Non-Math-major(X) ← Math(Y) & not Takes(X,Y)

negation as failure: inference rule, roughly: derive inference ¬A from
failure to prove A.
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A motivating example
Toy Student Database

Student(John)
Student(Mary)
Student(Sue)
Teacher(Julia)

Takes(John,C101)
Takes(Mary,C101)
Takes(Mary,C301)
Takes(Sue,C301)
Teaches(Julia,C101)

Math(C101)
Math(C301)

Math-Teacher(X) ← Math(Y) & Teaches(X,Y)
Non-Math-major(X) ← Math(Y) & not Takes(X,Y)

negation as failure: The inference rule that makes it possible to infer
negative facts from our logic programs!
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Problem: Logical Consequence and Negation in Logic

▶ Any formula α is a logical consequence of (or logically entailed by) a set
of formulas Γ = {F1, F2, ...}

Γ |= α

iff there is no interpretation in which Γ is true and α is false.

E.g., in Γ = {Student(Mary), Teacher(Julia)}, we have:
Γ ̸|= ¬Student(Julia) and Γ ̸|= Student(Julia)

From Γ ̸|= α it does not necessarily follow that Γ |= ¬α

database context: We want to conclude ¬Student(Julia), but this
is not a sound inference w.r.t. classical logic.
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Logical Consequence and Negation in Classical Logic
▶ To convince ourselves of this, we can recall the following correspondence

between entailment and satisfiability (Davis et al., 1994)[p.235,Thrm2.1]:

Theorem : Γ = {F1, ...Fn} |= α⇔ F1 ∧ .. ∧ Fn ∧ ¬α is unsatisfiable

1 ## pip install python -sat
2 from pysat . solvers import Glucose3
3 ### Gamma = [ Student (Mary), Teacher ( Julia )],
4
5 ### Does ˜ Student ( Julia ) follow from Gamma ?
6 try1 = Glucose3 ()
7 try1. add_clause ([1]) ## 1= F_1= Student (Mary)
8 try1. add_clause ([2]) ## 2= F_2= Teacher ( Julia )
9 try1. add_clause ([3]) ## 3= alpha = Student ( Julia )

10 ### conjunctive formula : 1 & 2 & 3
11 print (try1. solve ())#=> ‘sat ‘, i.e., G={1 ,2} |/= not 3
12
13 ### Does Student ( Julia ) follow from Gamma ?
14 try2 = Glucose3 ()
15 try2. add_clause ([1]) ## 1= F_1= Student (Mary)
16 try2. add_clause ([2]) ## 2= F_1= Teacher ( Julia )
17 try2. add_clause ([ -3]) ## -3= not Student ( Julia )
18 ### conjunctive formula : 1 & 2 & ˜3
19 print (try2. solve ())#=> ‘sat ‘, i.e., G={1 ,2} |/= 3
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Logical Consequence and Negation in Classical Logic
▶ To convince ourselves of this, we can recall the following correspondence

between entailment and satisfiability (Davis et al., 1994)[p.235,Thrm2.1]:

Theorem : Γ = {F1, ...Fn} |= α⇔ F1 ∧ .. ∧ Fn ∧ ¬α is unsatisfiable

1 ## pip install python -sat
2 from pysat . solvers import Glucose3
3
4 try1 = Glucose3 ()
5 try1. add_clause ([1]) ## 1= Student (Mary)
6 try1. add_clause ([2]) ## 2= Teacher ( Julia )
7 try1. add_clause ([3 , -3]) ## 3 can be true or false
8
9 ### enumerate all possible interpretations

10 for interpretation in try1. enum_models ():
11 print ( interpretation )
12 # [1, 2, -3]
13 # [1, 2, 3]
14 # neither 3 nor -3 occurs in every model

The point: Additional machinery is needed to operationalize
not/as far as we know.
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Logic Programming: Some Reminders

▶ Declarative Semantics (What?): Based on subsets of first-order logic
(FOL), focus here: Horn subset and definite clauses:

A0

head

← A1, ..., An

body

(n ≥ 0) (clausal form ∀ A0

pos. literal

∨ ¬A1

neg. literal

∨... ∨ ¬An)

consisting of a single positive literal, no negation. Definite program P:
any set of definite clauses; Normal programs: allow negation in body.

▶ Procedural Semantics (How?): Want to answer a goal query:

← G1, ...Gm (clausal form ∀¬G1 ∨ ... ∨ ¬Gm)

computed using special case of Resolution (Robinson, 1965),
SLD-resolution. aim for program P:

P |= ∃(G1 ∧ ... ∧ Gm) θ1...θm

answers
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Closed World Assumption (CWA): Intuition

▶ The general form of the closed-world assumption (CWA, (Reiter, 1981))
for any FOL theory Γ:

CWA(Γ) = Γ ∪
{
¬α | α is ground formula s.t. Γ ̸|= α

}
,

in other words:

From Γ ̸|= α we will conclude that Γ |= ¬α

E.g., in Γ = {Student(Mary), Teacher(Julia), Teaches(Julia,C101),
Math(C101), Math-teacher(X)← Math(Y), Teaches(X,Y)} ,

CWA(Γ) = Γ ∪
{
¬Teacher(Mary),¬Student(Julia),

¬Teaches(Mary,C101),¬Math-teacher(Mary), ...
}
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Closed World Assumption (CWA): Properties and Problems

▶ An important property of classical logic, monotonicity:

Given any theories Γ, Γ′ s.t. Γ ⊆ Γ′, forall α : Γ |= α implies Γ′ |= α

This is lost with CWA(non-monotonic), e.g.,
Γ = {Student(Mary), Teacher(Julia), ...}, Γ′ = Γ ∪ {Teacher(Mary)}
we have that

CWA(Γ) |= ¬Teacher(Mary) yet CWA(Γ′) ̸|= ¬Teacher(Mary)

▶ Bigger Problem: FOL (even restricted to horn clauses) is undecidable
(i.e., no general algorithm can show Γ ̸|= α in finite-time), not possible to
compute CWA(Γ) from Γ.
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Negation as (finite) Failure

▶ A form of CWA with emphasis on finite failure:

CWAfinite = Γ∪
{
¬α | ground α s.t. all attempts at Γ |= α (finitely) fail

}
,

weaker than CWA, CWAfinite(Γ) ⊆ CWA(Γ).

Operationally: flip notion of success and failure (Lloyd, 2012); e.g.,
Γ = {Student(Mary), Teacher(Julia), Teaches(Julia,C101),

Math(C101), Math-teacher(X)← Math(Y), Teaches(X,Y)}

Success

Fail

Flip
Negated Goal Failed Attempt to Show Opposite
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Negation as (finite) Failure: How to operationalize

▶ SLD-resolution: resolution inference rule for definite programs:

goal

← G1, ..., Gi−1, Gi

selected

, ..., Gm (m ≥ 0)
selected clause

A0

selected

← A1, ..., An (n ≥ 0)

← G1, ..., Gi−1, A1, ..., An, ...Gm
Gi .θ = A0.θ

unifyable

coupled with selection and search method; permits inferring positive
information when repeated application leads to the empty goal.

▶ SLDNF-resolution: SLD-resolution extended with additional rule for
negation as failure, used in Prolog:

← G1, ..., Gi−1,
negation
¬Gi , ..., Gm

G1, ..., Gi−1, ..., Gm
all attempts at Gi (finitely) fail

Question: Can we reconcile this with logic, does it make sense?
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Negation as (finite) Failure: Semantics
Clark (1978) gave one of the earliest declarative semantics for negation as
failure, based on notion of program completion.

11



Negation as (finite) Failure: Semantics
▶ Intuition: When using theory/program Γ with CWA, we actually consider

the completion of Γ, Comp(Γ).

E.g., Γ = {Student(Mary), Teacher(Julia)}

Comp(Γ) = Γ ∪
{

Student(X)↔ X = Mary
equality pred.

, Teacher(X)↔ X = Julia
equality

}
1 compl_G . add_clause ([1]) ## Gamma = [ 1= Student (Mary),
2 compl_G . add_clause ([2]) ## 2= Teacher ( Julia ) ]
3 ## queries = [ 3= Student ( Julia ), 4= Teacher (Mary) ]
4 ## 5 = (Mary = Julia ) = ( Julia = Mary) = False
5 compl_G . add_clause ([ -5])
6 ### Student ( Julia ) <-> Julia =Mary
7 compl_G . add_clause ([ -3 ,5]) # 3 -> 5
8 compl_G . add_clause ([ -5 ,3]) # 5 -> 3
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13 # [1, 2, -3, -4, -5]

Result: Comp(Γ) |= ¬Student(Julia) and Comp(Γ) |= ¬Teacher(Mary)
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Clark Completion Rules

▶ Clark Completion (Clark, 1978): standard set of completion rules
coupled with equality axioms (special cases excluded).

- 1. Variable Restrictions: For all facts A(t1, ..., to)← add

A(x1, ..., xo)← x1 = t2 ∧ ... ∧ xo = to

- 2. Material Equivalences: for all rules A(X)← A′
i (∀i ≤ k) add:

A(X)↔ A′
1 ∨ A′

2 ∨ .. ∨ A′
k :

- 3. Equality: add ¬(ti = tj) for all non-unifiable terms ti , tj . Undefined
predicates: negate any k-ary predicate A in body not included as head:

¬A(X1, .., Xk)
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Clark Completion Rules: Example

E.g., Γ = {Student(Mary), Teacher(Julia), Teaches(Julia,C301),
Math(C101), Math-teacher(X)← Math(Y ), Teaches(X , Y )}

Comp(Γ) = Γ ∪
{

Student(X)↔ X=Mary,

Teacher(X)↔ X=Julia,

Math(X)↔ X=C101,

Math-teacher(X)↔ Math(Y ), Teaches(X , Y ),
Teaches(X,Y)↔ X=Julia, Y=C301,

¬(Mary = Julia),¬(Mary = C101),¬(Julia = C101)}

Note: used as a declarative semantics for negation as failure, can be used
directly (computable) with general FOL/SAT solvers.
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Properties of Clark Completion and Negation as Failure

Some important properties of completion, stated for definite programs.

- Completion extends Γ, i.e., Γ |= α implies Comp(Γ) |= α for any α.

- Adds no new positive information, i.e., If Comp(Γ) |= α holds for an
atomic formula α, then Γ |= α.

Relating our procedural approach (SLDNF-resolution) to Clark
completion, sound for comp w.r.t success and failure (Clark, 1978).

- If α succeeds (precise definition omitted) from program/theory Γ
via SLDNF with answer θ, then Comp(Γ) |= αθ.

- If α fails from program/theory Γ via SLDNF, then Comp(Γ) |= ¬α.
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Conclusion and Summary

▶ Problem: Deriving negative information from logic programs/databases.
negation as failure: negate things we can’t prove, general closed-world
assumption (CWA), non-monotonic inference rule.

Negation as (finite) failure: weaker form of CWA, procedurally:
extension of SLD-resolution, prove negation by exhaustively showing finite
failure to prove opposite.

declarative semantics in terms of Clark completion.
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Credits and Additional Reading

▶ Many ideas and examples taken from the following (see for more details):

Lecture notes: Richard Mayr: https://www.inf.ed.ac.uk/
teaching/courses/lp/2014/slides/lpTheory7.pdf, Marin
Mircea: https://staff.fmi.uvt.ro/˜mircea.marin/lectures/
LFP/FoundationsOfLP.pdf, Vladimir Lifshitz https://www.cs.
utexas.edu/users/vl/teaching/lbai/completion.pdf, Marek
Sergot: https://www.doc.ic.ac.uk/˜mjs/teaching/
KnowledgeRep491/NBF_491-2x1.pdf

General references general logic programming (Lloyd, 2012),
SLDNF-resolution (Nienhuys-Cheng and Wolf, 1997), NAF (Clark,
1978; Shepherdson, 1998).
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Thank you.
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