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A motivating example

Toy Student Database

Student (John)
Student (Mary)
Student (Sue)

Teacher (Julia)

Takes (John,C101)
Takes (Mary,C101)
Takes (Mary,C301)
Takes (Sue,C301)
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Math(C101)
Math(C301)

Operationalizing not and as far as we know in traditional databases
(Codd, 1970): Assume that all tuples not in the database are false.
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A motivating example

Toy Student Database
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Problem: not/as far as we know, not immediately amenable to classical

logic.
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A motivating example

Toy Student Database
Student (John)
Student (Mary)
Student (Sue)
Teacher (Julia)

Takes (John,C101)
Takes (Mary,C101)
Takes (Mary,C301)
Takes (Sue,C301)
Teaches(Julia,C101)

Math(C101)
Math(C301)

Math-Teacher (X) < Math(Y) & Teaches(X,Y)
Non-Math-major(X) < Math(Y) & not Takes(X,Y)

negation as failure: The inference rule that makes it possible to infer

negative facts from our logic programs!
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Problem: Logical Consequence and Negation in Logic

P Any formula o is a logical consequence of (or logically entailed by) a set
of formulas ' = {Fi, F>, ...}
e o

iff there is no interpretation in which I is true and « is false.

E.g., in I = {Student (Mary), Teacher (Julia) }, we have:
I F&£ —Student (Julia) and ' & Student(Julia)

’ From I }= « it does not necessarily follow that I' |= —\a‘

database context: We want to conclude —Student (Julia), but this

is not a sound inference w.r.t. classical logic.
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Logical Consequence and Negation in Classical Logic

P To convince ourselves of this, we can recall the following correspondence
between entailment and satisfiability (Davis et al., 1994)[p.235,Thrm2.1]:

‘ Theorem : [ = {Fi,...F,} = o< F1L A A Fy A~ is unsatisfiable ‘

1 ## pip install python-sat

2 from pysat.solvers import Glucose3

3  ### Gamma = [Student(Mary), Teacher (Julia)],
4

5

5 ### Does ~Student(Julia) follow from Gamma?

6 tryl = Glucose3()

7 tryl.add_clause([1]) ## 1=F_1=Student (Mary)

8 tryl.add_clause([2]) ## 2=F_2=Teacher (Julia)

9 tryl.add_clause([3]) ## 3=alpha=Student (Julia)

10 ### conjunctive formula: 1 & 2 & 3

11 | print (tryl.solve())#=> ‘sat‘, i.e., G={1,2} |/= not 3

13 | ### Does Student(Julia) follow from Gamma?

14 try2 = Glucose3()

15 | try2.add_clause([1]) ## 1=F_1=Student (Mary)

16 | try2.add_clause ([2]) ## 2=F_1=Teacher (Julia)

17  try2.add_clause([-3]) ## -3=not Student(Julia)

18 | ### conjunctive formula: 1 & 2 & ~3

19 print(try2.solve())#=> ‘sat‘, i.e., G={1,2} |/= 3




Logical Consequence and Negation in Classical Logic

P To convince ourselves of this, we can recall the following correspondence
between entailment and satisfiability (Davis et al., 1994)[p.235, Thrm2.1]:

’ Theorem : I ={F,...F} EFas AAAFA-als unsatisfiable‘

1 ## pip install python-sat
2 from pysat.solvers import Glucose3

4 tryl = Glucose3()

5 tryl.add_clause([1]) ## 1=Student (Mary)
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7 tryl.add_clause([3,-3]) ## 3 can be true or false

9 ### enumerate all possible interpretations
10 for interpretation in tryl.enum_models():
11 print (interpretation)

12 | # [1, 2, -3]

13 | # [1, 2, 3]

14 | # neither 3 nor -3 occurs in every model




Logical Consequence and Negation in Classical Logic

P To convince ourselves of this, we can recall the following correspondence
between entailment and satisfiability (Davis et al., 1994)[p.235, Thrm2.1]:

’ Theorem : I ={F,...F} EFas AAAFA-als unsatisfiable‘

1 ## pip install python-sat
2 from pysat.solvers import Glucose3

4 tryl = Glucose3()

5 tryl.add_clause([1]) ## 1=Student (Mary)

6 tryl.add_clause([2]) ## 2=Teacher (Julia)

7 tryl.add_clause([3,-3]) ## 3 can be true or false

9 ### enumerate all possible interpretations
10 for interpretation in tryl.enum_models():
11 print (interpretation)

12 | # [1, 2, -3]

13 # [1, 2, 3]

14 | # neither 3 nor -3 occurs in every model

L J

The point: Additional machinery is needed to operationalize

not/as far as we know.
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P Declarative Semantics (What?): Based on subsets of first-order logic
(FOL), focus here: Horn subset and definite clauses:

Ay < A1, ..., An(n>0) (clausal formV Ay V -A; V..V -A))
—_ — —_

head body pos. literal  neg. literal

consisting of a single positive literal, no negation. Definite program P:

any set of definite clauses; Normal programs: allow negation in body.
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P Declarative Semantics (What?): Based on subsets of first-order logic
(FOL), focus here: Horn subset and definite clauses:

Ay < A1, ..., An(n>0) (clausal formV Ay V -A; V..V -A))
—_ —_ —_

head body pos. literal  neg. literal

consisting of a single positive literal, no negation. Definite program P:

any set of definite clauses; Normal programs: allow negation in body.

P Procedural Semantics (How?): Want to answer a goal query:
+— Gi,...Gp (clausal form V=G1 V ... V =Gm)

computed using special case of Resolution (Robinson, 1965),
SLD-resolution. aim for program P:

PE3IGA..AGn)b1..0n

answers
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Closed World Assumption (CWA): Intuition

P The general form of the closed-world assumption (CWA, (Reiter, 1981))
for any FOL theory I':

CWA(I) =rTu {—u | «is ground formulas.t. [ [~ oz},

in other words:

‘ From I' £ o we will conclude that I = -« ‘

E.g., in I = {Student (Mary), Teacher (Julia), Teaches(Julia,C101),
Math(C101),Math-teacher(X) + Math(Y), Teaches(X,Y)} ,

CWA(M)=Tu {—\Teacher(Mary) , Student (Julia),

—Teaches(Mary,C101), -Math-teacher (Mary), }
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Closed World Assumption (CWA): Properties and Problems

» An important property of classical logic, monotonicity:

‘Given any theories I',[" s.t. T C I’ forall a: T |=a implies ' = a‘

This is lost with CWA (non-monotonic), e.g.,
I = {Student (Mary), Teacher (Julia),...}, [' = [ U {Teacher (Mary) }
we have that

CWA(I) = —Teacher (Mary) yet CWA(I') £ —Teacher (Mary)

P Bigger Problem: FOL (even restricted to horn clauses) is undecidable
(i.e., no general algorithm can show I [~ « in finite-time), not possible to
compute CWA(I') from T,
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Negation as (finite) Failure

» A form of CWA with emphasis on finite failure:
CWA inite = I'U{—\a | ground « s.t. all attempts at I' |= « (finitely) fail},
weaker than CWA, CWAgiyiee(I) € CWA(T).
Operationally: flip notion of success and failure (Lloyd, 2012); e.g.,

I = {Student (Mary), Teacher (Julia), Teaches(Julia,C101),
Math(C101),Math-teacher(X) + Math(Y), Teaches(X,Y)}

Negated Goal Failed Attempt to Show Opposite
+ —Math-teacher(Mary) FIIP) <+ Math-teacher(Mary)
Math-teacher(X) « H»ath(Y), Teaches(X,Y)
PEEESE 0y : X — Mary
O < Math(Y), Teaches(Mary,Y) unification
Success l Math(C'101)
« - 6 :Y - Cl01

+ Teaches(Mary, C101) unification

Fail




Negation as (finite) Failure: How to operationalize

» SLD-resolution: resolution inference rule for definite programs:

goal selected clause
T 1 e |
«— Gl,...,G,'_l7 G; ,,Gm(mZO) Ao <—A1,...,An(n20)
jeced iected
selectes selecte
Gi.0 = Ao.0
— Gi,...,Gi_1,A1, ..., An, .Gy (b

unifyable

10



Negation as (finite) Failure: How to operationalize

» SLD-resolution: resolution inference rule for definite programs:

goal selected clause
T 1 e |
«— Gl,...,G,'_l7 G; ,,Gm(mZO) Ao <—A1,...,An(n20)
jeced iected
selectes selecte
Gi.0 = Ao.0
— Gi,...,Gi_1,A1, ..., An, .Gy (b

unifyable

coupled with selection and search method; permits inferring positive

information when repeated application leads to the empty goal.
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Negation as (finite) Failure: How to operationalize

» SLD-resolution: resolution inference rule for definite programs:

goal selected clause
T 1 e |
«— Gl,...,G,'_l7 G; ,,Gm(mZO) Ao <—A1,...,An(n20)
jeced iected
selectes selecte
Gi.0 = Ao.0
— Gi,...,Gi_1,A1, ..., An, .Gy (b

coupled with selection and search method; permits inferring positive

information when repeated application leads to the empty goal.

» SLDNF-resolution: SLD-resolution extended with additional rule for
negation as failure, used in Prolog:
negation
— Gl, vy G,‘,l7 I_|_GII s eeny Gm
all attempts at G; (finitely) fail
Gi,.Gi1,....Gm P (finitely)

Question: Can we reconcile this with logic, does it make sense?



Negation as (finite) Failure: Semantics

Clark (1978) gave one of the earliest declarative semantics for negation as

failure, based on notion of program completion.

Keith L. Clark
Department of Computer Sciemce & Statistics

Queen Mary College, London, England

ABSTRACT

A query evaluation process for a logic data base comprising a
set of clauses is described. It is essentially a Horn clause theo-
rem prover augmented with a special inference rule for dealing with
negation. This is the pegation as failure inference rule whereby
~ P can be inferred if every possible proof of P fails. The chief
advantage of the query evaluator described is the effeciency with
which it can be implemented. Moreover, we show that the negation
as failure rule only allows us to conclude negated facts that could
be inferred from the axioms of the completed data base, a data
base of relation definitions and equality schemas that we comsider
is implicitly given by the data base of clauses. We also show that
when the clause data base and the queries satisfy certain con-
straints, which still leaves us with a data base more general than
a conventional relational data base, the query evaluation process
will find every answer that is a logical consequence of the com-
pleted data base.
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Negation as (finite) Failure: Semantics

P Intuition: When using theory/program I with CWA, we actually consider

the completion of I, Comp(I').

E.g., I = {Student(Mary), Teacher(Julia)}

Comp(lN) =TU {Student(X) <> X = Mary, Teacher(X) < X
—

equality pred.

compl_G.add_clause ([1]) ## Gamma =

## queries = [ 3=Student (Julia),

### Student (Julia) <-> Julia=Mary
compl_G.add_clause([-3,5]) # 3 -> 5

compl_G.add_clause ([-5,3]) 58 —>83

1

2

3

4

5 compl_G.add_clause ([-5])
6

7

8 #

9 ### Teacher (Mary) <-> Mary = Julia
10 compl_G.add_clause([-4,5]) # 4 -> &5
11 compl_G.add_clause([-5,4]) # 5 -> 4
12 for interp in compl_G.enum_models ():

13 # [1, 2, -3, -4, -5]

[ 1=Student (Mary),

compl_G.add_clause ([2]) ## 2=Teacher (Julia) ]

4=Teacher (Mary) ]

## 5 = (Mary = Julia) = (Julia = Mary) = False

print (interp)

12



Negation as (finite) Failure: Semantics

P Intuition: When using theory/program I with CWA, we actually consider

the completion of I, Comp(I').

E.g., I = {Student(Mary), Teacher(Julia)}

Comp(lN) =TU {Student(X) < X = Mary, Teacher(X) <+ X = Julia}
S 5

equality pred.

equality

compl_G.add_clause([1]) ## Gamma = [ 1=Student (Mary),
compl_G.add_clause ([2]) ## 2=Teacher (Julia) ]

## queries = [ 3=Student(Julia), 4=Teacher (Mary) 1]
## 5 = (Mary = Julia) = (Julia = Mary) = False
compl_G.add_clause ([-5])
### Student (Julia) <-> Julia=Mary
compl_G.add_clause([-3,5]) # 3 -> 5
compl_G.add_clause([-5,3]) # 5 -> 3
### Teacher (Mary) <-> Mary = Julia
compl_G.add_clause([-4,5]) # 4 -> 5
compl_G.add_clause([-5,4]) # 5 -> 4
for interp in compl_G.enum_models(): print(interp)
# [1, 2, -3, -4, -5]

: ComP(IN) = —~Student(Julia) and CoMmP(I) = - Teacher(Mary)

12



Negation as (finite) Failure: Semantics

P Intuition: When using theory/program I with CWA, we actually consider
the completion of I, Comp(I').

E.g., I = {Student(Mary), Teacher(Julia)}

Comp(lN) =TUu {Student(X) <+ X = Mary, Teacher(X) <+ X = Julia}
S 5

equality pred. equality

1 | compl_G.add_clause([1]) ## Gamma = [ 1=Student (Mary),
2 compl_G.add_clause([2]) ## 2=Teacher (Julia) ]

3 ## queries = [ 3=Student(Julia), 4=Teacher (Mary) 1]
4 ## 5 = (Mary = Julia) = (Julia = Mary) = False

5 compl_G.add_clause ([-5])

6 ### Student (Julia) <-> Julia=Mary

7 compl_G.add_clause([-3,5]) # 3 -> 5

8 compl_G.add_clause([-5,3]) # 5 -> 3

9 ### Teacher (Mary) <-> Mary = Julia

10 compl_G.add_clause([-4,5]) # 4 -> &5

11 compl_G.add_clause([-5,4]) # 5 -> 4

12 for interp in compl_G.enum_models(): print(interp)
13 # [1, 2, -3, -4, -5]

Possible to reconcile with classical logic and —.

13



Clark Completion Rules

P Clark Completion (Clark, 1978): standard set of completion rules

coupled with equality axioms (special cases excluded).
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Clark Completion Rules

P Clark Completion (Clark, 1978): standard set of completion rules

coupled with equality axioms (special cases excluded).

- 1. Variable Restrictions: For all facts A(t1,...,t,) + add

AXty o Xo) X1 =t Ao AXo = to

- 2. Material Equivalences: for all rules A(X) < A; (Vi < k) add:

A(X) ¢ ALV ALV LV AL

- 3. Equality: add —(t; = t;) for all non-unifiable terms t;, t;. Undefined
predicates: negate any k-ary predicate A in body not included as head:

—A(Xi, - Xe)

14



Clark Completion Rules: Example

E.g., I = {Student (Mary), Teacher (Julia), Teaches(Julia,C301),
Math(C101),Math-teacher(X) + Math(Y), Teaches(X, Y)}

Comp(N) =T U {
Student(X) <> X=Mary,
Teacher(X) <+ X=Julia,
Math(X) <+ X=C101,
Math-teacher(X) <+ Math(Y), Teaches(X, Y),
Teaches(X,Y) <» X=Julia, Y=C301,
—(Mary = Julia), 7(Mary = C101), ~(Julia = C101)
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Clark Completion Rules: Example

E.g., I = {Student (Mary), Teacher (Julia), Teaches(Julia,C301),
Math(C101),Math-teacher(X) + Math(Y), Teaches(X, Y)}

Comp(N) =T U {
Student(X) <> X=Mary,
Teacher(X) <> X=Julia,
Math(X) <+ X=C101,
Math-teacher(X) <> Math(Y'), Teaches(X, Y),
Teaches(X,Y) <» X=Julia, Y=C301,
—(Mary = Julia), 7(Mary = C101), ~(Julia = C101)

Note: used as a declarative semantics for negation as failure, can be used
directly (computable) with general FOL/SAT solvers.
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Properties of Clark Completion and Negation as Failure

Some important properties of completion, stated for definite programs.

- Completion extends I, i.e., [ = « implies CoMP(I') = « for any «.

- Adds no new positive information, i.e., If CoMP(I') = « holds for an

atomic formula a, then T |= a.
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Properties of Clark Completion and Negation as Failure

Some important properties of completion, stated for definite programs.

- Completion extends I, i.e., [ = « implies CoMP(I') = « for any «.

- Adds no new positive information, i.e., If CoMP(I') = « holds for an

atomic formula a, then T |= a.

Relating our procedural approach (SLDNF-resolution) to Clark

completion, sound for COMP w.r.t success and failure (Clark, 1978).

- If « succeeds (precise definition omitted) from program/theory I
via SLDNF with answer 6, then Comp(I') E af.

- If a fails from program/theory I' via SLDNF, then CompP(I') = —a.
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Conclusion and Summary

P Problem: Deriving negative information from logic programs/databases.
negation as failure: negate things we can't prove, general closed-world

assumption (CWA), non-monotonic inference rule.

Negation as (finite) failure: weaker form of CWA, procedurally:
extension of SLD-resolution, prove negation by exhaustively showing finite

failure to prove opposite.

declarative semantics in terms of Clark completion.
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Credits and Additional Reading

P Many ideas and examples taken from the following (see for more details):

Lecture notes: Richard Mayr: https://www.inf.ed.ac.uk/
teaching/courses/1p/2014/slides/1pTheory7.pdf, Marin
Mircea: https://staff.fmi.uvt.ro/~mircea.marin/lectures/
LFP/FoundationsOfLP.pdf, Vladimir Lifshitz https://wuw.cs.
utexas.edu/users/vl/teaching/lbai/completion.pdf, Marek
Sergot: https://www.doc.ic.ac.uk/~mjs/teaching/
KnowledgeRep491/NBF_491-2x1.pdf

General references general logic programming (Lloyd, 2012),
SLDNF-resolution (Nienhuys-Cheng and Wolf, 1997), NAF (Clark,
1978; Shepherdson, 1998).
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https://www.inf.ed.ac.uk/teaching/courses/lp/2014/slides/lpTheory7.pdf
https://www.inf.ed.ac.uk/teaching/courses/lp/2014/slides/lpTheory7.pdf
https://staff.fmi.uvt.ro/~mircea.marin/lectures/LFP/FoundationsOfLP.pdf
https://staff.fmi.uvt.ro/~mircea.marin/lectures/LFP/FoundationsOfLP.pdf
https://www.cs.utexas.edu/users/vl/teaching/lbai/completion.pdf
https://www.cs.utexas.edu/users/vl/teaching/lbai/completion.pdf
https://www.doc.ic.ac.uk/~mjs/teaching/KnowledgeRep491/NBF_491-2x1.pdf
https://www.doc.ic.ac.uk/~mjs/teaching/KnowledgeRep491/NBF_491-2x1.pdf

Thank you.
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