
Supplementary Material: Polyglot Semantic Parsing in APIs

Kyle Richardson†, Jonathan Berant‡, Jonas Kuhn†

†Institute for Natural Language Processing, University of Stuttgart, Germany
{kyle,jonas}@ims.uni-stuttgart.de

‡Tel-Aviv University, Israel
joberant@cs.tau.ac.il

In this short note, we include several implemen-
tation and algorithmic details about our decoders
(Section 1) and our neural network models (Sec-
tion 2), as well as additional information about the
datasets and the component representations used
(Section 3).

1 Shortest Path Decoders

1.1 k-Shortest Paths
In our paper, we implement Yen’s algorithm (Yen,
1971) to compute k-SSSPs when doing decoding.
For completeness, we show the full algorithm in
Algorithm 1. As detailed in Brander and Sin-
clair (1995), this method is one of many k Short-
est Path algorithms that works by finding deviat-
ing or branching paths from an initial SSSP (com-
puted in Line 3). For each k starting on Line 4,
the method then dissects the most recent short-
est path and again uses the single shortest path
method to find an alternative path from each point
new node that hasn’t been observed in the cur-
rent list A (as checked starting on line 8).

In the case of DAGs, this algorithm has a time
complexity of O(k |V | (|V | + |E|)) for k > 11.
This complexity can be explained in the follow-
ing way: O(|V | + |E|) (where V and E are the
graph nodes and edges respectively) is the com-
plexity of the DAG single shortest path procedure
(or for k = 1). For each k, we consider l number
of new start positions in the most recent k − 1
SSSP (starting on Line 5), which in the worst case
can be of size |V |. Each branching path j ∈ l then
requires a run of the SSSP procedure of complex-
ity O(|V |+ |E|) (as stated above).

In Algorithm 1, we show several optimizations
that improve the runtime (though not the com-
plexity) of the procedure, including starting each
nested call to SP at new start as opposed to

1modified on 7.27.2018

searching through the full graph, and using a min
heap to store candidate shortest path in Lines 2,13
and 15 as opposed to having to re-sortB each time
at line 15. Another frequently used optimization
trick (not shown here), known as Lawler’s trick
(Lawler, 1972), involves keeping track of already
computed branching paths so as to avoid solving
for duplicate candidates shortest path in B and
having to make repeated calls to the SP procedure
(line 11). This last trick significantly improved
the running time of our decoders (see Brander and
Sinclair (1995) for more details and analysis).

1.2 Lexical Shortest Path Implementation

An illustration of the lexical SSSP search is shown
in Figure 1, which highlights several implementa-
tion details described below.

One important detail (discussed in the paper) is
that we approximate the IBM Model 1 computa-
tion in the SSSP search by ignoring the normal-
izer A (i.e., the number of all many-to-one align-
ments from x→ z). We do, however, use an addi-
tional data structure l ∈ N|V | to store the length of
the translation corresponding to the shortest path
at each node from the source b (the importance
of this is shown in final computation in Figure 1).
Accordingly, the source node will have a length of
0, each adjacency node from the source with have
a length of 0 + 1, or 1, and so on. This information
can then be used for normalizing the final score
in the normal fashion when a terminating node is
reached (in our case, our graphs have a unique ter-
minating node).

Due to this approximation, our decoder as im-
plemented and described above is not exact, as
proved by the counter example shown in Figure 2.
In general, since the normalizer is computed at the
terminating node (as opposed to during the SSSP
search), longer sequences can block shorter se-
quences with higher (post normalized) probability.

Algorithm 1 k-SSSP Decoding via Yen’s Algorithm
Input: Input x, DAG G, SSSP method SP, number of paths K, translation mode θ, starting node b.
Output: K shortest paths A
1: A[k]← Nil . Initialize the k-best list A
2: B ← [] . Initialize the k-best candidate list B
3: A[0]← SP(x,G, θ, b) . Find initial SSSP starting from b
4: for k ∈ 1..K do
5: for i ∈ 0 to LEN(A[k − 1])− 1 do . Run through each node in recent SSSP
6: new start← A[k − 1][i]
7: root← A[k − 1][: i]
8: for each path p ∈ A do . Find all paths in A matching root and block next point
9: if root = p[0 : i] then

10: G ← BLOCK(G, p[i], p[i+ 1])

11: branching← SP(x,G, θ,new start) . Find new SSSP from new start
12: candidate← root+ branching
13: B ← HEAPPUSH(B,candidate) . Add candidate as a candidate shortest path
14: G ← UNBLOCK(G)
15: A[k]← HEAPPOP(B) . Add best candidate to A
16: return A

Dataset # Epochs Embedding # Hidden States beam
Sportscaster 25 (max.) 200 100 10
GeoQuery 20 (max.) 250-300 100 5
Tech. Docs. 8 (max.) 250-300 100-150 2-3

Table 1: Neural Network settings across the different
datasets.

Despite this, we found this method to be empiri-
cally optimal for k > 1 when compared against
our previous work (Richardson and Kuhn, 2017)
(in which an exact, albeit less efficient, method is
used). An additional implementation trick is that
after each candidate SSSP is found (line 12 in Al-
gorithm 1), we run our translation model on the
input and full candidate again to compute the cor-
rect score.

1.3 Longest vs. Shortest Paths

When working with DAGs, we could also solve
for longest paths by replacing min with max in
Equation 3. We use min since our method will
work equally well for other types of graph path
problems where using max is not feasible.

On this last point, it is important to note that
while our experiments deal exclusively with DAGs,
which is motivated by the simplicity of the tar-
get component languages, more complex graphs
could be used in our framework by simply replac-
ing our SSSP method with SSSP methods that are
suited to such graphs.

2 Neural Models

2.1 Hyper Parameters

Table 1 shows the different neural network settings
across our datasets. In all datasets, we used shal-

low networks with a single layer encoder and de-
coder, and early stopping by monitoring training
progress to a validation set. Similarly, we used
vanilla stochastic gradient descent in all cases and
did not use any form of regularization or drop out,
since this did not seem to help. Standardly, we
normalize the resulting log probability of candi-
date translations by the length of the target sen-
tence. All models were implemented using the
Cython wrapper for Dynet (Neubig et al., 2017).

In each case, we modeled out of vocabulary by
mapping each training token with a frequency of 2
or less to an artificial OOV token.

3 Dataset Credits and Details

3.1 Credits and New Data
The additional Japanese Python and Lua datasets
were taken from the following resources (re-
spectively): http://docs.python.jp/2/
and https://www.lua.org/manual/. All
datasets are publicly available (see below). We
note that the Java datasets was first investigated in
Deng and Chrupala (2014), and the Unix dataset
was first introduced in Richardson and Kuhn
(2014).

3.2 Sportscaster
When working with the Sportscaster corpus, one
issue is that each training item is paired not with
a gold meaning representation, but a set of possi-
ble meaning representations, and as such involves
learning with ambiguous supervision. One idea,
which we pursued early on, is to train our trans-
lation and neural models on all possible pairs, in-
cluding incorrect pairs, which lead to sub-optimal

http://docs.python.jp/2/
https://www.lua.org/manual/

Graph State Search Position and Score Computation

∞0

s0 = [0.0, 0.0, 0.0, 0.0]

∞1 s1 = [0.0, 0.0, 0.0, 0.0]

∞2

s2 = [0.0, 0.0, 0.0, 0.0]

∞3

s3 = [0.0, 0.0, 0.0, 0.0]

∞5 s5 = [0.0, 0.0, 0.0, 0.0]

∞4 s4 = [0.0, 0.0, 0.0, 0.0]

fun1

fun2

x

x
y *end*

end

Initialize d←∞6
, s← [0.0, 0.0, 0.0, 0.0]

6

7.95

s0 = [0.05, 0.35, 0.4, 0.05]

∞1 s1 = [0.0, 0.0, 0.0, 0.0]

∞2

s2 = [0.0, 0.0, 0.0, 0.0]

∞3

s3 = [0.0, 0.0, 0.0, 0.0]

∞5 s5 = [0.0, 0.0, 0.0, 0.0]

∞4 s4 = [0.0, 0.0, 0.0, 0.0]

fun1

fun2

x

x
y *end*

end

Node: 0
s0 =

[
pt(x1 | λ), pt(x2 | λ), pt(x3 | λ), pt(x4 | λ)

]

7.95

s0 = [0.05, 0.35, 0.4, 0.05]

4.79 s1 = [0.6, 0.55, 0.5, 0.05]

∞2

s2 = [0.0, 0.0, 0.0, 0.0]

∞3

s3 = [0.0, 0.0, 0.0, 0.0]

∞5 s5 = [0.0, 0.0, 0.0, 0.0]

∞4 s4 = [0.0, 0.0, 0.0, 0.0]

fun1

fun2

x

x
y *end*

end

Node: 1
score0→1 = − log

∏
(s0+[

pt(x1 | fun1), pt(x2 | fun1), pt(x3 | fun1),

pt(x4 | fun1)
]
)

7.95

s0 = [0.05, 0.35, 0.4, 0.05]

4.79 s1 = [0.6, 0.55, 0.5, 0.05]

6.60

s2 = [0.15, 0.44, 0.4, 0.05]

∞3

s3 = [0.0, 0.0, 0.0, 0.0]

∞5 s5 = [0.0, 0.0, 0.0, 0.0]

∞4 s4 = [0.0, 0.0, 0.0, 0.0]

fun1

fun2

x

x
y *end*

end

Node: 2
score0→2 = − log

∏
(s0+[

pt(x1 | fun2), pt(x2 | fun3), pt(x3 | fun4),

pt(x4 | fun2)
]
)

7.95

s0 = [0.05, 0.35, 0.4, 0.05]

4.79 s1 = [0.6, 0.55, 0.5, 0.05]

6.60

s2 = [0.15, 0.44, 0.4, 0.05]

1.74

s3 = [0.7, 0.55, 0.7, 0.65]

∞5 s5 = [0.0, 0.0, 0.0, 0.0]

∞4 s4 = [0.0, 0.0, 0.0, 0.0]

fun1

fun2

x

x
y *end*

end

Node: 3
score1→3 = − log

∏
(s1+[

pt(x1 | x), pt(x2 | x), pt(x3 | x), pt(x4 | x)
]
)

score2→3 = − log
∏

(s2+[
pt(x1 | x), pt(x2 | x), pt(x3 | x), p(x4 | x)

]
)

7.95

s0 = [0.05, 0.35, 0.4, 0.05]

4.79 s1 = [0.6, 0.55, 0.5, 0.05]

6.60

s2 = [0.15, 0.44, 0.4, 0.05]

1.74

s3 = [0.7, 0.55, 0.7, 0.65]

∞5 s5 = [0.0, 0.0, 0.0, 0.0]

1.67 s4 = [0.75, 0.55, 0.7, 0.65]

fun1

fun2

x

x

y *end*

end

Node: 4
score3→4 = − log

∏
(s3+[

pt(x1 | y), pt(x2 | y), pt(x3 | y), pt(x4 | y)
]
)

7.95

s0 = [0.05, 0.35, 0.4, 0.05]

4.79 s1 = [0.6, 0.55, 0.5, 0.05]

6.60

s2 = [0.15, 0.44, 0.4, 0.05]

1.74

s3 = [0.7, 0.55, 0.7, 0.65]

6.13 s5 = [0.7, 0.55, 0.7, 0.65]/3

1.67 s4 = [0.75, 0.55, 0.7, 0.65]

fun1

fun2

x

x
y *end*

end

Node: 5

score3→5 = − log

∏
s3

34

score4→5 = − log

∏
s4

44

7.95 4.79 1.74 6.13
fun1 x *end* Back traversal to source node 0 and path discovery

pt(· |fun1) pt(· |fun2) pt(· |x) pt(· |y) pt(· |λ)
function 1 0.6 0.1 0.1 0.05 0.05
function 2 0.1 0.8 0.1 0.05 0.05
applied 0.2 0.1 0.0 0.0 0.35
to 0.1 0.0 0.2 0.0 0.4
arg x 0.0 0.0 0.6 0.0 0.05
and 0.0 0.0 0.0 0.2 0.05
arg y 0.0 0.0 0.0 0.7 0.05

Figure 1: An illustration of the lexical SSSP algorithm for the text input x = function 1 applied to arg x. The
table for pt is on the bottom, where λ denotes an artificial NULL word token on the target. modified on
7.27.2018.

2.99

s0 = [0.05]

0.43

s1 = [0.65]

0.28

s2 = [0.75]

1.38
fun1

fun1

x *end*

Method − log p(λ fun1 x | function 1) − log p(λ fun1 | function 1)
Exact 1.38 1.20
Graph SSSP 1-best 1.38 ?

Figure 2: An example graph and decoding run where the lexical SSSP search does not find the correct 1-best
translation (involving the excluded red edge) of the input function 1 (uses pt from Figure 1).

results. Instead, we disambiguated the data by
training an initial word translation model on this
ambiguous dataset, then used this model to disam-
biguate and select the most probable meaning rep-
resentation. All other models were then trained on
this disambiguated dataset. In doing this, we fol-
low the original experiments by Chen and Mooney
(2008).

3.3 Component Representations

As discussed in the paper, the component lan-
guages are finite languages, since each API con-
tains only a finite number of defined or valid
functions. As such, not only is this task a con-
strained machine translation problem, but also
a constrained semantic parsing problem. See
(Richardson and Kuhn, 2017) for more discussion
about this and a comparison with the related task
of automatic algebra word problem solving (where
a similar assumption is often made about the set of
valid algebra equation templates being finite).

For more details about the target component
representations, including a new way of normal-
izing these representations across programming
languages and translating these normalized forms
into classical logic, see Richardson (2018).

4 Resources

All data is hosted here: https://github.
com/yakazimir/Code-Datasets, and
source code here: https://github.com/
yakazimir/zubr_public.

References
AW Brander and MC Sinclair. 1995. A Comparative

Study of k-Shortest Path Algorithms. In In Proc. of
11th UK Performance Engineering Workshop.

David L. Chen and Raymond J. Mooney. 2008. Learn-
ing to Sportscast: A Test of Grounded Language

Acquisition. In Proceedings of ICML-2008. pages
128–135.

Huijing Deng and Grzegorz Chrupala. 2014. Semantic
Approaches to Software Component Retrieval with
English Queries. In Proceedings of LREC-14. pages
441–450.

Eugene L Lawler. 1972. A Procedure for Computing
the k Best Solutions to Discrete Optimization Prob-
lems and its Application to the Shortest Path Prob-
lem. Management science 18(7):401–405.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. Dynet:
The Dynamic Neural Network Toolkit. arXiv
preprint arXiv:1701.03980 https://github.
com/clab/dynet.

Kyle Richardson. 2018. A Language for Func-
tion Signature Representations. arXiv preprint
arXiv:1804.00987 .

Kyle Richardson and Jonas Kuhn. 2014. Unixman cor-
pus: A Resource for Language Learning in the Unix
Domain. In Proceedings of LREC-2014.

Kyle Richardson and Jonas Kuhn. 2017. Learning Se-
mantic Correspondences in Technical Documenta-
tion. In Proceedings of ACL.

Jin Y Yen. 1971. Finding the k Shortest Loopless Paths
in a Network. Management Science 17(11):712–
716.

https://github.com/yakazimir/Code-Datasets
https://github.com/yakazimir/Code-Datasets
https://github.com/yakazimir/zubr_public
https://github.com/yakazimir/zubr_public
https://github.com/clab/dynet
https://github.com/clab/dynet
https://github.com/clab/dynet
https://github.com/clab/dynet

