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Probability and Dealing with Uncertainty

I Playing with Dice: Suppose we have a fair die with faces
, , , , , that we decide to roll. questions:

1. Will the die land on some face? yes

2. Will the die land on ?

maybe:
1
6 ≈ 0.16

3. Will the die land on a face with less than or equal to 4 dots?

maybe:
4
6 ≈ 0.66

Features of Questions 2-3: Do not have a yes/no answer, require some
measurement or (random) experimentation.
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Probability and Dealing with Uncertainty

I Playing with Dice: Suppose we have a fair die with faces
, , , , , that we decide to roll. questions:

3. Will the die land on a face with less than or equal to 4 dots?

maybe:
4
6 ≈ 0.66

Why is the numerator 4 and the denominator 6?

“event“ E =
{

, , ,
}

; |E | = 4
“sample space“ Ω =

{
, , , , ,

}
; |Ω| = 6

One Definition: Probability is a measure of the size of a set. 1

1Some examples and figures (and general presentation) taken from Chan (2021),
https://engineering.purdue.edu/ChanGroup/eBook.html.
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A Simple Model of Probability
Components: 1) sample space Ω (set of all possible outcomes); 2) event
E (some subset of Ω); probability (number that describes relative size of
E and Ω)

P︸︷︷︸
measure

[E ]︸︷︷︸
set

= E
Ω︸︷︷︸

number ∈ [0,1]

1. What is the probability of obtaining a face that is less than 5 and an even
number?
E = { , , , } ∩ { , , },

Ω = { , , , , , }
= { , }
{ , , , , , }

≈ 0.33

Important tool set theory; describing increasingly complex events.

2. What is the probability of heads twice (H, H) after two fair coin flips?
E = {(H, H)}

Ω = {(H, H), (H, T), (T, T), (T, H)} = 0.25

More complex (random) “experiment“, interested in the outcomes
of two separate events (aka random variables) (X1, X2).
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A Simple Model of Probability (continued)
3. Assuming a shuffled deck of 52 cards that is distributed to 4 players, 13

cards each, what is the probability that each player gets an ace?

|E | = 134

|Ω| =
(52

4

) ≈ 0.438

Important tool: combinatorics, how to count.

4. What is the probability of having to wait for a bus? (continuous interval)

Ω = {t | 0 ≤ t ≤ 30min.}

5. What is the probability of Scottish independence?

Subjective probability vs. relative frequentist interpretation of
probability (our mini theory of probability so far).
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The General Picture: Elements of a Probabilistic Model

Components: Sample Space, Events, Probability measure P

Mathematical Tools: set theory, combinatorics, (measure theory), ...

Starting Point: Probability is a measure of the size of a set.
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What are the (standard) rules of probability?
I Kolmogorov axioms, relate to rules that govern our measurement

function P (how does this work?):

1. For every event E , P[E ] ≥ 0. (non-negativity)
2. P[Ω] = 1
3. For disjoint events {E1, E2, ..., En} (i.e., where for each Ei , Ej ,

Ei ∩ Ej = ∅ ), (additivity)

P[E1 ∪ E2 ∪ ... ∪ En] =
n∑

i=1

P[Ei ]
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Consequences of the Axioms
I The probability of events are less than or equal to 1, i.e., 0 ≤ P[E ] ≤ 1

Hint: Axiom 1 (the first part of inequality) combined with Axiom 2.
I monotonicity: If E ⊆ E ′ then P[E ] ≤ P[E ′]
I P[∅] = 0

P[E ] = P[E ∪ ∅](since any E ∪ ∅ = E) = P[E ] + P(∅) (axioms 3)
I If E1 ∩ E2 = ∅, P[E1 ∪ E2] = P[A1] + P[A2]
I For event E and P[E ], P[E c ] = 1− P[E ]

Hint: Apply above, E = E1, E c = E2 since E ∩ E c = ∅
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Do the rules make sense? Can we justify them?
I Question: What is the probability of a coin landing on heads (H)?

Another view: Probability reflects how much we are willing to
wager in a bet; our beliefs about the world.2

Worth $1 if heads Worth $1 if heads
Price $0.5 Price $0.01

Probability 0.5 Probability 0.01
belief: fair coin belief: biased coin

Viewed in this way, we can then start thinking about
subjective probabilities (e.g., prob. of Scottish Independence)
Rules of probability still play a very important role!

2Examples from Jeffrey (2004), see for an overview of this view.
9
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Do the rules make sense? Can we justify them?

I Question: What is the probability of a coin landing on heads (H)?

Worth $1 if heads Worth $1 if heads
Price $0.5 Price $0.01

Probability 0.5 Probability 0.01
belief: fair coin belief: biased coin

Scenario: 3 We bet on the proposition Heads for a stake S = $1, and an
agent’s betting quotient q (amount lost if loss); optionally: s for ¬H.

General Setting
Lands H Payoff

True $1− $q
False −$q

Fair Coin Wager q = $0.5
Lands H Payoff S = $1

True $0.5
False −$0.5

3For more details, see Vineberg (2016).
https://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=dutch-book
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General Setting
Lands H Payoff

True $1− $q
False −$q

Fair Coin Wager q = $0.5
Lands H Payoff S = $1

True $0.5
False −$0.5

Expected value: (0.5 ∗ 0.5) + (−0.5 ∗ 0.5) = 0

3For more details, see Vineberg (2016).
https://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=dutch-book
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Do the rules make sense? Can we justify them?

I Question: What is the probability of a coin landing on heads (H)?

Worth $1 if heads Worth $1 if heads
Price $0.5 Price $0.01

Probability 0.5 Probability 0.01
belief: fair coin belief: biased coin
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Lands H Payoff

True $1− $q
False −$q

Fair Coin Wager q = $0.5
Lands H Payoff S = $1

True $0.5
False −$0.5

Irrational Wager q + s > 1
Lands H Payoff S = $1

True $1− $(q + s)
False $1− $(q + s)

Dutch book argument: making wagers in way that flouts probability
axioms (e.g., axiom 2) yields irrational behavior (someone always loses).

3For more details, see Vineberg (2016).
https://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=dutch-book
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Conclusion

I Probability theory: A mathematical tool we can use to reason about
uncertainty; key concepts: probability as a measure of the size of sets,
(random) events, sample space, Kolmogorov axioms.

I Can serve as a good scientific inductive logic, subjective probability,
flouting rules can lead you astray, (standard) probability theory matters!
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Thank you.
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