
Understanding the Logic of Generative AI
through Logic and Programming

Kyle Richardson

Allen Institute for AI (AI2)

October 2025

Collaborators: Ashish Sabharwal (AI2), Vivek Srikumar (University of Utah)

General purpose large language models (LLMs)

prompt

response

▶ General purpose models: trained at massive scales, used as-is and

directly for a wide range of problems.

2

General purpose large language models (LLMs)

prompt

response

▶ General purpose models: trained at massive scales, used as-is and

directly for a wide range of problems.

2

General purpose large language models (LLMs)

prompt

response

▶ General purpose models: trained at massive scales, used as-is and

directly for a wide range of problems.

Models have far exceeded expectations

2

Language models as agent simulators

LLMs as agents in competitive
environments, games

▶ Can we use LMs to simulate complex social dynamics? (Chen et al.,

2023; Zhang et al., 2024; Yang et al., 2025)

3

Language models as agent simulators

LLMs as agents in competitive
environments, games

Valuable tool for running social science experiments, testing theories of

language interaction, complex reasoning, adversarial language experts.

3

Language models as part of complex systems

ChatGPT

Model
generated
code

Machine
learning
experiment

Experiment automation

▶ SUPER (Bogin et al., 2024), benchmark for setting up and executing

research code repositories, agent benchmarking (Bragg et al., 2025).

4

Language models as part of complex systems, agents

Cheng et al. (2025) Yu et al. (2025)

A tool for scientific discovery, automated experiment execution, helping

non-experts engage in research.

4

A tool for scientific discovery, automated experiment execution, helping

non-experts engage in research.

Lots of optimism, hubris, Nobel prizes....

4

A tool for scientific discovery, automated experiment execution, helping

non-experts engage in research.

Missing semantic and algorithmic foundations.

4

A tool for scientific discovery, automated experiment execution, helping

non-experts engage in research.

Missing semantic and algorithmic foundations.

4

A tool for scientific discovery, automated experiment execution, helping

non-experts engage in research.

Can symbolic techniques help?

4

How do we get to general purpose LLMs? recipe

Pre-training

unlabeled
corpus

pre-trained LM

Instruction
tuning

Task data
(prompt,output)

fine-tuned LM

Preference
tuning

human preferences
(prompt, ranked

preference)

aligned LM

General
Purpose LM

prompt

response

user

ChatGPT

produces produces produces

Training models
to generate text

Training models
on target tasks

Training models to
have human-like
preferences

5

How do we get to general purpose LLMs? recipe

Pre-training

unlabeled
corpus

pre-trained LM

Instruction
tuning

Task data
(prompt,output)

fine-tuned LM

Preference
tuning

human preferences
(prompt, ranked

preference)

aligned LM

General
Purpose LM

prompt

response

user

ChatGPT

produces produces produces

Training models
to generate text

Training models
on target tasks

Training models to
have human-like
preferences

5

How do we get to general purpose LLMs? recipe

Pre-training

unlabeled
corpus

pre-trained LM

Instruction
tuning

Task data
(prompt,output)

fine-tuned LM

Preference
tuning

human preferences
(prompt, ranked

preference)

aligned LM

General
Purpose LM

prompt

response

user

ChatGPT

produces produces produces

Training models
to generate text

Training models
on target tasks

Training models to
have human-like
preferences

5

How do we get to general purpose LLMs? recipe

Pre-training

unlabeled
corpus

pre-trained LM

Instruction
tuning

Task data
(prompt,output)

fine-tuned LM

Preference
tuning

human preferences
(prompt, ranked

preference)

aligned LM

General
Purpose LM

prompt

response

user

ChatGPT

produces produces produces

Training models
to generate text

Training models
on target tasks

Training models to
have human-like
preferences

5

How do we get to general purpose LLMs? recipe

Pre-training

unlabeled
corpus

pre-trained LM

Instruction
tuning

Task data
(prompt,output)

fine-tuned LM

Preference
tuning

human preferences
(prompt, ranked

preference)

aligned LM

General
Purpose LM

prompt

response

user

ChatGPT

produces produces produces

Training models
to generate text

Training models
on target tasks

Training models to
have human-like
preferences

Model Alignment

5

How do we get to general purpose LLMs? recipe

Pre-training

unlabeled
corpus

pre-trained LM

Instruction
tuning

Task data
(prompt,output)

fine-tuned LM

Preference
tuning

human preferences
(prompt, ranked

preference)

aligned LM

General
Purpose LM

prompt

response

user

ChatGPT

produces produces produces

Training models
to generate text

Training models
on target tasks

Training models to
have human-like
preferences

▶ Rough approximation of the kinds of general purpose models we use.

5

OLMo: fully open-source general purpose LMs

https://allenai.org/olmo

5

https://allenai.org/olmo

The landscape of Generative AI research

input prediction

Model foundations Learning

Loss

Architectures, limitations Loss functions

6

The landscape of Generative AI research

input prediction

Model foundations Learning

Loss

Architectures, limitations Loss functions

▶ What model to use? What kinds of computational problems can models

solve? Limitations

6

The landscape of Generative AI research

input prediction

Model foundations

input prediction

Learning

target

Loss

Architectures, limitations Loss functions

▶ How do we train and tune models? Loss function design, optimization

algorithms.

6

The landscape of Generative AI research

input prediction

Model inference and usage

user Prompting

no

yes

refine

AI system design

Decoding, tools

input prediction

Model foundations

input prediction

Learning

target

Loss

Architectures, limitations Loss functions

6

The landscape of Generative AI research

input prediction

Model inference and usage

user Prompting

no

yes

refine

AI system design

Decoding, tools

input prediction

Model foundations

input prediction

Learning

target

Loss

Architectures, limitations Loss functions

6

The landscape of Generative AI research

input prediction

Model inference and usage

user Prompting

no

yes

refine

AI system design

Decoding, tools

input prediction

Model foundations

input prediction

Learning

target

Loss

Architectures, limitations Loss functions
LLM modeling as programming

6

Programming techniques for model development

input prediction

Model foundations Learning

Loss

Architectures, limitations Loss functions

Functional
Programming (Rasp)

▶ Programming languages for expressing transformer computation (Weiss

et al., 2021; Yang et al., 2024; Yang and Chiang, 2024).

6

Programming techniques for model development

input prediction

Learning

target

Loss

Loss functions

Declarative style
programming

(Scallop)

▶ Loss design via logical and probabilistic programming, neuro-symbolic

modeling (Li et al., 2023; Manhaeve et al., 2018).

6

Programming techniques for model development

input prediction

Model inference and usage

user Prompting

no

yes

refine

AI system design

Decoding, tools

Structured imperative
programming

(LMQL)

▶ Prompting as (imperative) programming (Beurer-Kellner et al., 2023).

6

Programming techniques for model development

input prediction

Model inference and usage

user Prompting

no

yes

refine

AI system design

Decoding, tools

Structured imperative
programming

(LMQL)

▶ Prompting as (imperative) programming (Beurer-Kellner et al., 2023).

Declarative-style programming, loss function design.

6

Declarative-style programming for preference modeling

Pre-training

unlabeled
corpus

pre-trained LM

Instruction
tuning

Task data
(prompt,output)

fine-tuned LM

Preference
tuning

human preferences
(prompt, ranked

preference)

aligned LM

General
Purpose LM

prompt

response

user

ChatGPT

produces produces produces

Training models
to generate text

Training models
on target tasks

Training models to
have human-like
preferences

Today: Logical and probabilistic programming of preference losses,

semantic characterizations.

7

Declarative-style programming for preference modeling

Pre-training

unlabeled
corpus

pre-trained LM

Instruction
tuning

Task data
(prompt,output)

fine-tuned LM

Preference
tuning

human preferences
(prompt, ranked

preference)

aligned LM

General
Purpose LM

prompt

response

user

ChatGPT

produces produces produces

Training models
to generate text

Training models
on target tasks

Training models to
have human-like
preferences

Questions: What do we do when we tune models to preferences? Can

these underlying principles help us to discover better algorithms?

7

Declarative-style programming for preference modeling

Pre-training

unlabeled
corpus

pre-trained LM

Instruction
tuning

Task data
(prompt,output)

fine-tuned LM

Preference
tuning

human preferences
(prompt, ranked

preference)

aligned LM

General
Purpose LM

prompt

response

user

ChatGPT

produces produces produces

Training models
to generate text

Training models
on target tasks

Training models to
have human-like
preferences

Questions: What do we do when we tune models to preferences? Can

these underlying principles help us to discover better algorithms?

7

Probabilistic programming for other applications

Pre-training

unlabeled
corpus

pre-trained LM

Instruction
tuning

Task data
(prompt,output)

fine-tuned LM

Preference
tuning

human preferences
(prompt, ranked

preference)

aligned LM

General
Purpose LM

prompt

response

user

ChatGPT

produces produces produces

Training models
to generate text

Training models
on target tasks

Training models to
have human-like
preferences

If time permits: Probabilistic programming techniques and languages for

prompting and chain-of-thought.

7

Probabilistic programming for other applications

Pre-training

unlabeled
corpus

pre-trained LM

Instruction
tuning

Task data
(prompt,output)

fine-tuned LM

Preference
tuning

human preferences
(prompt, ranked

preference)

aligned LM

General
Purpose LM

prompt

response

user

ChatGPT

produces produces produces

Training models
to generate text

Training models
on target tasks

Training models to
have human-like
preferences

Preference learning and alignment

7

Offline preference alignment in a nutshell

▶ Given an offline or static dataset consisting of pairwise preferences for
input x :

Dp =

{
(x (i), y (i)

w , y
(i)
l)

}M

i=1

optimize a policy model y ∼ πθ(· | x) (LLM) to such preferences.

Safety example (Dai et al., 2024; Ji et al., 2024)

x : Will drinking brake fluid kill you?

yl : No, drinking brake fluid will not kill you

yw : Drinking brake fluid will not kill you, but it can be extremely
dangerous... [it] can lead to vomiting, dizziness, fainting,

Note: What constitutes a winner or loser is fuzzy, datasets are very noisy

and aggregate many different kinds of preferences.

8

Offline preference alignment in a nutshell

▶ Given an offline or static dataset consisting of pairwise preferences for
input x :

Dp =

{
(x (i), y (i)

w , y
(i)
l)

}M

i=1

optimize a policy model y ∼ πθ(· | x) (LLM) to such preferences.

Safety example (Dai et al., 2024; Ji et al., 2024)

x : Will drinking brake fluid kill you?

yl : No, drinking brake fluid will not kill you

yw : Drinking brake fluid will not kill you, but it can be extremely
dangerous... [it] can lead to vomiting, dizziness, fainting,

Note: What constitutes a winner or loser is fuzzy, datasets are very noisy

and aggregate many different kinds of preferences.

8

Offline preference alignment in a nutshell

▶ Given an offline or static dataset consisting of pairwise preferences for
input x :

Dp =

{
(x (i), y (i)

w , y
(i)
l)

}M

i=1

optimize a policy model y ∼ πθ(· | x) (LLM) to such preferences.

Safety example (Dai et al., 2024; Ji et al., 2024)

x : Will drinking brake fluid kill you?

yl : No, drinking brake fluid will not kill you

yw : Drinking brake fluid will not kill you, but it can be extremely
dangerous... [it] can lead to vomiting, dizziness, fainting,

Note: What constitutes a winner or loser is fuzzy, datasets are very noisy

and aggregate many different kinds of preferences.

8

Offline preference alignment in a nutshell

▶ Given an offline or static dataset consisting of pairwise preferences for
input x :

Dp =

{
(x (i), y (i)

w , y
(i)
l)

}M

i=1

optimize a policy model y ∼ πθ(· | x) (LLM) to such preferences.

Safety example (Dai et al., 2024; Ji et al., 2024)

x : Will drinking brake fluid kill you?

yl : No, drinking brake fluid will not kill you

yw : Drinking brake fluid will not kill you, but it can be extremely
dangerous... [it] can lead to vomiting, dizziness, fainting,

Note: What constitutes a winner or loser is fuzzy, datasets are very noisy

and aggregate many different kinds of preferences.

1. Unclear what is actually in our datasets

8

Direct Preference Alignment (DPA) approaches

9

Direct Preference Alignment (DPA) approaches

E(x ,yw ,yl)∼D

[
− log σ

(
β log πθ(yw |x)

πref(yw |x)
− β log πθ(yl |x)

πref(yl |x)

)]
DPO loss function

Intuitively: reasoning about relationship be-
tween predictions of policy πθ and reference πref.

9

Direct Preference Alignment (DPA) approaches

2. These equations are not easy to understand

9

Direct Preference Alignment (DPA) approaches

E(x ,yw ,yl)∼D

[
− log σ

(
β log πθ(yw |x)

πref(yw |x)
− β log πθ(yl |x)

πref(yl |x)

)]
DPO loss function

Question: What kind of discrete reasoning prob-
lems do these losses encode?

9

The many varieties of DPO

− log σ

(
β log πθ(yw |x)

πref(yw |x) − β log πθ(yl |x)
πref(yl |x)

)
DPO loss

DPO variants

from Meng et al. (2024)

10

The many varieties of DPO

− log σ

(
β log πθ(yw |x)

πref(yw |x) − β log πθ(yl |x)
πref(yl |x)

)
DPO loss

DPO variants

from Meng et al. (2024)

▶ No reference approaches (e.g., CPO, ORPO, only involves a single model)

versus multi-model, reference approaches (DPO).

10

The many varieties of DPO

− log σ

(
β log πθ(yw |x)

πref(yw |x) − β log πθ(yl |x)
πref(yl |x)

)
DPO loss

DPO variants

from Meng et al. (2024)

Questions: How are all these variations related to one another, nature of

the space of losses?

10

The many varieties of DPO

− log σ

(
β log πθ(yw |x)

πref(yw |x) − β log πθ(yl |x)
πref(yl |x)

)
DPO loss

DPO variants

from Meng et al. (2024)

Formalization of preference losses

10

The many varieties of DPO

− log σ

(
β log πθ(yw |x)

πref(yw |x) − β log πθ(yl |x)
πref(yl |x)

)
DPO loss

DPO variants

from Meng et al. (2024)

Going away from these opaque equations

10

Preference learning as a discrete reasoning problem

− log σ

(
log πθ(yw |x)

πref(yw |x)
− log πθ(yl |x)

πref(yl |x)

)
Loss Function ℓ

Two models, four predictions

Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

Symbolic Program P

High-level model behavior

Decompilation Compilation

11

Preference learning as a discrete reasoning problem

− log σ

(
log πθ(yw |x)

πref(yw |x)
− log πθ(yl |x)

πref(yl |x)

)
Loss Function ℓ

Two models, four predictions

Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

Symbolic Program P

High-level model behavior

Decompilation Compilation

11

Preference learning as a discrete reasoning problem

− log σ

(
log πθ(yw |x)

πref(yw |x)
− log πθ(yl |x)

πref(yl |x)

)
Loss Function ℓ

Two models, four predictions

Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

Symbolic Program P

High-level model behavior

Decompilation Compilation

▶ Problem: Given some loss function, can we derive a symbolic program or

expression that characterizes the semantics of that loss?

Compilation: Translating specifications into loss, well studied.

Decompilation:Losses to specifications (inverse), less explored.

11

Preference learning as a discrete reasoning problem

− log σ

(
log πθ(yw |x)

πref(yw |x)
− log πθ(yl |x)

πref(yl |x)

)
Loss Function ℓ

Two models, four predictions

Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

Symbolic Program P

High-level model behavior

Decompilation Compilation

▶ Problem: Given some loss function, can we derive a symbolic program or

expression that characterizes the semantics of that loss?

Compilation: Translating specifications into loss, well studied.

Decompilation:Losses to specifications (inverse), less explored.

11

Preference learning as a discrete reasoning problem

− log σ

(
log πθ(yw |x)

πref(yw |x)
− log πθ(yl |x)

πref(yl |x)

)
Loss Function ℓ

Two models, four predictions

Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

Symbolic Program P

High-level model behavior

Decompilation Compilation

▶ Problem: Given some loss function, can we derive a symbolic program or

expression that characterizes the semantics of that loss?

Compilation: Translating specifications into loss, well studied.

Decompilation:Losses to specifications (inverse), less explored.

11

Preference learning as a discrete reasoning problem

− log σ

(
log πθ(yw |x)

πref(yw |x)
− log πθ(yl |x)

πref(yl |x)

)
Loss Function ℓ

Two models, four predictions

Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

Symbolic Program P

High-level model behavior

Decompilation Compilation

▶ Problem: Given some loss function, can we derive a symbolic program or

expression that characterizes the semantics of that loss?

Compilation: Translating specifications into loss, well studied.

Decompilation:Losses to specifications (inverse), less explored.

11

Preference learning as a discrete reasoning problem

− log σ

(
log πθ(yw |x)

πref(yw |x)
− log πθ(yl |x)

πref(yl |x)

)
Loss Function ℓ

Two models, four predictions

Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

Symbolic Program P

High-level model behavior

Decompilation Compilation

▶ Problem: Given some loss function, can we derive a symbolic program or

expression that characterizes the semantics of that loss?

1. Compilation: Translating specifications into loss, well studied.

Decompilation: Loss to specifications, less explored

11

Preference learning as a discrete reasoning problem

− log σ

(
log πθ(yw |x)

πref(yw |x)
− log πθ(yl |x)

πref(yl |x)

)
Loss Function ℓ

Two models, four predictions

Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

Symbolic Program P

High-level model behavior

Decompilation Compilation

▶ Problem: Given some loss function, can we derive a symbolic program or

expression that characterizes the semantics of that loss?

1. Compilation: Translating specifications into loss, well studied.

Decompilation: Loss to specifications, less explored

differential logicFormula P Loss ℓ

Logic as loss, learning to satisfy (Marra et al., 2024)

interpret derive

11

Preference learning as a discrete reasoning problem

− log σ

(
log πθ(yw |x)

πref(yw |x)
− log πθ(yl |x)

πref(yl |x)

)
Loss Function ℓ

Two models, four predictions

Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

Symbolic Program P

High-level model behavior

Decompilation Compilation

▶ Problem: Given some loss function, can we derive a symbolic program or

expression that characterizes the semantics of that loss?

1. Compilation: Translating specifications into loss, well studied.

2. Decompilation:Losses to specifications (inverse), less explored.

11

Preference learning as a discrete reasoning problem

− log σ

(
log πθ(yw |x)

πref(yw |x)
− log πθ(yl |x)

πref(yl |x)

)
Loss Function ℓ

Two models, four predictions

Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

Symbolic Program P

High-level model behavior

Decompilation Compilation

▶ Problem: Given some loss function, can we derive a symbolic program or

expression that characterizes the semantics of that loss?

1. Compilation: Translating specifications into loss, well studied.

2. Decompilation:Losses to specifications (inverse), less explored.

differential logicFormula P Loss ℓ

Loss as logic (Richardson et al., 2025)

interpret derive

11

Formal analysis via decompilation in general

Transformer weights

Model

RASP, LTL, FO(M)

Symbolic Program

Decompilation Compilation

12

Formal analysis via decompilation in general

Transformer weights

Model

RASP, LTL, FO(M)

Symbolic Program

Decompilation Compilation

12

Formal analysis via decompilation in general

Transformer weights

Model

RASP, LTL, FO(M)

Symbolic Program

Decompilation Compilation

▶ We know what the target languages are (Weiss et al., 2021; Merrill and Sabharwal,

2023; Yang and Chiang, 2024), how to compile, decompile (Friedman et al., 2023).

Compilation: Translating specifications into loss, well studied.

Decompilation:Losses to specifications (inverse), less explored.

12

Formal analysis via decompilation in general

CoT Trace

Model Behavior

?

Symbolic Program

Decompilation Compilation

13

Formal analysis via decompilation in general

CoT Trace

Model Behavior

?

Symbolic Program

Decompilation Compilation

13

Formal analysis via decompilation in general

CoT Trace

Model Behavior

?

Symbolic Program

Decompilation Compilation

▶ Not always clear what the target programming language is or should be.

Language model programming: the languages and formal interfaces

used for for doing such analysis (Richardson and Wijnholds, 2025).

Compilation: Translating specifications into loss, well studied.

Decompilation:Losses to specifications (inverse), less explored.

13

Language model programming: ESSLLI 2025

https://github.com/yakazimir/LMProgramming

14

https://github.com/yakazimir/LMProgramming

Language model programming: ESSLLI 2025

https://github.com/yakazimir/LMProgramming

What is the right programming language for preference?

14

https://github.com/yakazimir/LMProgramming

What do these programs tell us?

Implies(
M(x ,yl),M(x ,yw)

)

Model predicts loser Model predicts winner

w(M(x, y)) = πM(y | x)dddddddddddddddddd

Whenever the model deems the loser
to be a valid generation, it should
deem the winner to be valid too.

15

What do these programs tell us?

Implies(
M(x ,yl),M(x ,yw)

)

Model predicts loser Model predicts winner

w(M(x, y)) = πM(y | x)dddddddddddddddddd

Whenever the model deems the loser
to be a valid generation, it should
deem the winner to be valid too.

Conceptually: Model predications are logical propositions, Boolean

variables inside of formulas, weighted by prediction probability.

15

What do these programs tell us?

Implies(
M(x ,yl),M(x ,yw)

)

Model predicts loser Model predicts winner

w(M(x, y)) = πM(y | x)dddddddddddddddddd

Whenever the model deems the loser
to be a valid generation, it should
deem the winner to be valid too.

Conceptually: Model predications are logical propositions, Boolean

variables inside of formulas, weighted by prediction probability.

15

What do these programs tell us?

Implies(
M(x ,yl),M(x ,yw)

)

Model predicts loser Model predicts winner

w(M(x, y)) = πM(y | x)dddddddddddddddddd

Whenever the model deems the loser
to be a valid generation, it should
deem the winner to be valid too.

Conceptually: Predictions are connected through Boolean operators,

express constraints on predictions; ρθ as formulas.

15

Uncovering the natural logic of these algorithms

Implies(
M(x ,yl),M(x ,yw)

)

Model predicts loser Model predicts winner

w(M(x, y)) = πM(y | x)dddddddddddddddddd

Whenever the model deems the loser
to be a valid generation, it should
deem the winner to be valid too.

Assumption: Every loss function has an internal logic that can be

expressed in this way, we want to uncover that logic.

15

Uncovering the natural logic of these algorithms

Implies(
M(x ,yl),M(x ,yw)

)

Model predicts loser Model predicts winner

w(M(x, y)) = πM(y | x)dddddddddddddddddd

Whenever the model deems the loser
to be a valid generation, it should
deem the winner to be valid too.

Running example: This program and semantics is foundational to many

DPO-style losses.

15

Uncovering the natural logic of these algorithms

Implies(
M(x ,yl),M(x ,yw)

)

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

ε

Pθ(y | x)

y∈Σ∗

valid

not valid×.

.

loser

winner

Model behavior: Programs tell us about the structure of the model’s

output distribution (right).

16

Uncovering the natural logic of these algorithms

Implies(
M(x ,yl),M(x ,yw)

)

And(
M(x ,yw),
Not(M(x ,yl)))

ε

Pθ(y | x)

y∈Σ∗

valid

not valid×.

.

loser

winner

Model behavior: Programs tell us about the structure of the model’s

output distribution (right).

17

Uncovering the natural logic of these algorithms

Implies(
M(x ,yl),M(x ,yw)

)

And(
M(x ,yw),
Not(M(x ,yl)))

ε

Pθ(y | x)

y∈Σ∗

valid

not valid×.

.

loser

winner

Observation: The second program is more strict than the first, involves

semantic entailment.

17

Compilation and decompilation again

Implies(
M(x ,yl),M(x ,yw)

)

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

P

ℓ(D, θ) = − log Pθ(P | D, θ)︸ ︷︷ ︸
probabilistic logic

ℓCPO = − log σ

(
log πθ(yw |x)

πθ(yl |x)

)

ℓCPO(D, θ) = − logPθ(P | D, θ)︸ ︷︷ ︸
correctness property

Compilation

Decompilation

18

Compilation and decompilation again

Implies(
M(x ,yl),M(x ,yw)

)

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

P

ℓ(D, θ) = − log Pθ(P | D, θ)︸ ︷︷ ︸
probabilistic logic

ℓCPO = − log σ

(
log πθ(yw |x)

πθ(yl |x)

)

ℓCPO(D, θ) = − logPθ(P | D, θ)︸ ︷︷ ︸
correctness property

Compilation

Decompilation

What we did: defined a novel probabilistic logic for preference modeling,

interpret formulas in that logic to derive differentiable losses.

18

Compilation and decompilation again

Implies(
M(x ,yl),M(x ,yw)

)

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

P

ℓ(D, θ) = − log Pθ(P | D, θ)︸ ︷︷ ︸
probabilistic logic

ℓCPO = − log σ

(
log πθ(yw |x)

πθ(yl |x)

)

ℓCPO(D, θ) = − logPθ(P | D, θ)︸ ︷︷ ︸
correctness property

Compilation

Decompilation

18

Compilation and decompilation again

Implies(
M(x ,yl),M(x ,yw)

)

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

P

ℓ(D, θ) = − log Pθ(P | D, θ)︸ ︷︷ ︸
probabilistic logic

ℓCPO = − log σ

(
log πθ(yw |x)

πθ(yl |x)

)

ℓCPO(D, θ) = − logPθ(P | D, θ)︸ ︷︷ ︸
correctness property

Compilation

Decompilation

18

Compilation and decompilation again

Implies(
M(x ,yl),M(x ,yw)

)

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

P

ℓ(D, θ) = − log Pθ(P | D, θ)︸ ︷︷ ︸
probabilistic logic

ℓCPO = − log σ

(
log πθ(yw |x)

πθ(yl |x)

)

ℓCPO(D, θ) = − logPθ(P | D, θ)︸ ︷︷ ︸
correctness property

Compilation

Decompilation

The second thing we did: Defined a mechanical procedure for

decompilation, proved its correctness, invariance to choice of f .

18

Illustration of approach and results (Richardson et al., 2025)

− log σ

(
log Oddsθ(yw |x)

Oddsθ(yl |x)

)
Input Loss ℓORPO

ρtθ
ρbθ

= Pθ(yw |x)(1−Pθ(yl |x))
Pθ(yl |x)(1−Pθ(yw |x))

Core loss equation

Sem(ρtθ) = M(x, yw) ∧ ¬M(x, yl)

Sem(ρbθ) = M(x, yl) ∧ ¬M(x, yw)

Compositional translation

P:= Implies(
M(x ,yl), M(x ,yw))

PC := XOR(M(x ,yl) ,M(yw)))
PA := ⊥

Preference structure P

compilation decompilationThm.

19

Illustration of approach and results (Richardson et al., 2025)

− log σ

(
log Oddsθ(yw |x)

Oddsθ(yl |x)

)
Input Loss ℓORPO

ρtθ
ρbθ

= Pθ(yw |x)(1−Pθ(yl |x))
Pθ(yl |x)(1−Pθ(yw |x))

Core loss equation

Sem(ρtθ) = M(x, yw) ∧ ¬M(x, yl)

Sem(ρbθ) = M(x, yl) ∧ ¬M(x, yw)

Compositional translation

P:= Implies(
M(x ,yl), M(x ,yw))

PC := XOR(M(x ,yl) ,M(yw)))
PA := ⊥

Preference structure P

compilation decompilationThm.

19

Illustration of approach and results (Richardson et al., 2025)

− log σ

(
log Oddsθ(yw |x)

Oddsθ(yl |x)

)
Input Loss ℓORPO

ρtθ
ρbθ

= Pθ(yw |x)(1−Pθ(yl |x))
Pθ(yl |x)(1−Pθ(yw |x))

Core loss equation

Sem(ρtθ) = M(x, yw) ∧ ¬M(x, yl)

Sem(ρbθ) = M(x, yl) ∧ ¬M(x, yw)

Compositional translation

P:= Implies(
M(x ,yl), M(x ,yw))

PC := XOR(M(x ,yl) ,M(yw)))
PA := ⊥

Preference structure P

compilation decompilationThm.

19

Illustration of approach and results (Richardson et al., 2025)

− log σ

(
log Oddsθ(yw |x)

Oddsθ(yl |x)

)
Input Loss ℓORPO

ρtθ
ρbθ

= Pθ(yw |x)(1−Pθ(yl |x))
Pθ(yl |x)(1−Pθ(yw |x))

Core loss equation

Sem(ρtθ) = M(x, yw) ∧ ¬M(x, yl)

Sem(ρbθ) = M(x, yl) ∧ ¬M(x, yw)

Compositional translation

P:= Implies(
M(x ,yl), M(x ,yw))

PC := XOR(M(x ,yl) ,M(yw)))
PA := ⊥

Preference structure P

compilation decompilationThm.

19

Illustration of approach and results (Richardson et al., 2025)

− log σ

(
log Oddsθ(yw |x)

Oddsθ(yl |x)

)
Input Loss ℓORPO

ρtθ
ρbθ

= Pθ(yw |x)(1−Pθ(yl |x))
Pθ(yl |x)(1−Pθ(yw |x))

Core loss equation

Sem(ρtθ) = M(x, yw) ∧ ¬M(x, yl)

Sem(ρbθ) = M(x, yl) ∧ ¬M(x, yw)

Compositional translation

P:= Implies(
M(x ,yl), M(x ,yw))

PC := XOR(M(x ,yl) ,M(yw)))
PA := ⊥

Preference structure P

compilation decompilationThm.

19

Illustration of approach and results (Richardson et al., 2025)

− log σ

(
log Oddsθ(yw |x)

Oddsθ(yl |x)

)
Input Loss ℓORPO

ρtθ
ρbθ

= Pθ(yw |x)(1−Pθ(yl |x))
Pθ(yl |x)(1−Pθ(yw |x))

Core loss equation

Sem(ρtθ) = M(x, yw) ∧ ¬M(x, yl)

Sem(ρbθ) = M(x, yl) ∧ ¬M(x, yw)

Compositional translation

P:= Implies(
M(x ,yl), M(x ,yw))

PC := XOR(M(x ,yl) ,M(yw)))
PA := ⊥

Preference structure P

compilation decompilationThm.

▶ Preference structure, a core construct in our logic, encoding for

preference losses, has a natural Boolean interpretation.

19

Illustration of approach and results (Richardson et al., 2025)

− log σ

(
log Oddsθ(yw |x)

Oddsθ(yl |x)

)
Input Loss ℓORPO

ρtθ
ρbθ

= Pθ(yw |x)(1−Pθ(yl |x))
Pθ(yl |x)(1−Pθ(yw |x))

Core loss equation

Sem(ρtθ) = M(x, yw) ∧ ¬M(x, yl)

Sem(ρbθ) = M(x, yl) ∧ ¬M(x, yw)

Compositional translation

P:= Implies(
M(x ,yl), M(x ,yw))

PC := XOR(M(x ,yl) ,M(yw)))
PA := ⊥

Preference structure P

compilation decompilationThm.

▶ Preference structure, a core construct in our logic, encoding for

preference losses, has a natural Boolean interpretation.

question: Why is this useful to do?

19

Illustration of approach and results (Richardson et al., 2025)

− log σ

(
log Oddsθ(yw |x)

Oddsθ(yl |x)

)
Input Loss ℓORPO

ρtθ
ρbθ

= Pθ(yw |x)(1−Pθ(yl |x))
Pθ(yl |x)(1−Pθ(yw |x))

Core loss equation

Sem(ρtθ) = M(x, yw) ∧ ¬M(x, yl)

Sem(ρbθ) = M(x, yl) ∧ ¬M(x, yw)

Compositional translation

P:= Implies(
M(x ,yl), M(x ,yw))

PC := XOR(M(x ,yl) ,M(yw)))
PA := ⊥

Preference structure P

compilation decompilationThm.

▶ Preference structure, a core construct in our logic, encoding for

preference losses, has a natural Boolean interpretation.

How many preference loss functions are there?

19

Why is this useful? understanding the space

Implies(
M(x ,yl),M(x ,yw)

)

And(
M(x ,yw),
Not(M(x ,yl)))

P(1)

P(2)

Boolean functions, 2 variables

M(x, yw) M(x, yl) P(1) P(2)

T T ✓
T F ✓ ✓
F T

F F ✓

no reference: 256 losses

20

Why is this useful? understanding the space

Implies(
M(x ,yl),M(x ,yw)

)

And(
M(x ,yw),
Not(M(x ,yl)))

P(1)

P(2)

Boolean functions, 2 variables

M(x, yw) M(x, yl) P(1) P(2)

T T ✓
T F ✓ ✓
F T

F F ✓

no reference: 256 losses

▶ Every program (in our logic) is pair of Boolean functions (in n variables),

corr. to ✓ and , leads to 42
n

possible loss functions.

20

Why is this useful? understanding the space

Implies(
M(x ,yl),M(x ,yw)

)

And(
M(x ,yw),
Not(M(x ,yl)))

P(1)

P(2)

Boolean functions, 2 variables

M(x, yw) M(x, yl) P(1) P(2)

T T ✓
T F ✓ ✓
F T

F F ✓

no reference: 256 losses

Loss creation will end up being equivalent to drawing different sets of

✓ s and (or blank marks) in a truth table.

20

Why is this useful? understanding the space

Implies(
M(x ,yl),M(x ,yw)

)

And(
M(x ,yw),
Not(M(x ,yl)))

P(1)

P(2)

Boolean functions, 2 variables

M(x, yw) M(x, yl) P(1) P(2)

T T ✓
T F ✓ ✓
F T

F F ✓

no reference: 256 losses

Loss creation will end up being equivalent to drawing different sets of

✓ s and (or blank marks) in a truth table.

20

Loss functions as truth tables

Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

4 variables

Ref(x, yw) M(x, yl) Ref(x, yl) M(x, yw)
F F F F
F F F T
F F T F
F F T T
F T F F
F T F T
F T T F
F T T T
T F F F
T F F T
T F T F
T F T T
T T F F
T T F T
T T T F
T T T T

w/ reference: 4,294,967,296 losses

21

Loss functions as truth tables

Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

4 variables

Ref(x, yw) M(x, yl) Ref(x, yl) M(x, yw)
F F F F
F F F T
F F T F
F F T T
F T F F
F T F T
F T T F
F T T T
T F F F
T F F T
T F T F
T F T T
T T F F
T T F T
T T T F
T T T T

w/ reference: 4,294,967,296 losses

answer: loads.

21

Loss functions as truth tables

Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

4 variables

Ref(x, yw) M(x, yl) Ref(x, yl) M(x, yw)
F F F F
F F F T
F F T F
F F T T
F T F F
F T F T
F T T F
F T T T
T F F F
T F F T
T F T F
T F T T
T T F F
T T F T
T T T F
T T T T

w/ reference: 4,294,967,296 losses

question: How are losses related to one another?

21

Why is this useful? understanding the structure

Implies(
M(x ,yl),M(x ,yw)

)

And(
M(x ,yw),
Not(M(x ,yl)))

P(1)

P(2)

semantics: P(2) |= P(1)

M(x, yw) M(x, yl) P(1) P(2)

T T ✓
T F ✓ ✓
F T

F F ✓

Proposition (Xu et al., 2018): Loss behavior is monotonic w.r.t semantic

entailment: if P(2) |= P(1) then ℓ(D, θ,P(2)) ≥ ℓ(D, θ,P(1)).

22

Why is this useful? understanding the structure

Implies(
M(x ,yl),M(x ,yw)

)

And(
M(x ,yw),
Not(M(x ,yl)))

P(1)

P(2)

semantics: P(2) |= P(1)

M(x, yw) M(x, yl) P(1) P(2)

T T ✓
T F ✓ ✓
F T

F F ✓

Proposition (Xu et al., 2018): Loss is equivalent under semantic

equivalence: If P(2) ≡ P(1) then ℓ(D, θ,P(2)) = ℓ(D, θ,P(1)).

22

Why is this useful? understanding the structure

Implies(
M(x ,yl),M(x ,yw)

)

And(
M(x ,yw),
Not(M(x ,yl)))

P(1)

P(2)

semantics: P(2) |= P(1)

M(x, yw) M(x, yl) P(1) P(2)

T T ✓
T F ✓ ✓
F T

F F ✓

Theorem: ℓ(D, θ,P(2)) > ℓ(D, θ,P(1)) (the loss of P(1) is contained in the

loss of P(2)).

22

Why is this useful? understanding the structure

Implies(
M(x ,yl),M(x ,yw)

)

And(
M(x ,yw),
Not(M(x ,yl)))

P(1)

P(2)

semantics: P(2) |= P(1)

M(x, yw) M(x, yl) P(1) P(2)

T T ✓
T F ✓ ✓
F T

F F ✓

Theorem: ℓ(D, θ,P(2)) > ℓ(D, θ,P(1)) (the loss of P(1) is contained in the

loss of P(2)).

answer: Losses are related through their semantics

22

Why is this useful? understanding the structure

Implies(
M(x ,yl),M(x ,yw)

)

And(
M(x ,yw),
Not(M(x ,yl)))

P(1)

P(2)

semantics: P(2) |= P(1)

M(x, yw) M(x, yl) P(1) P(2)

T T ✓
T F ✓ ✓
F T

F F ✓

Practical strategy: Start with empirically successful losses, modify

semantics (make more or less constrained), then experiment accordingly.

22

Deriving new losses symbolically, from first principles

− log σ

(
log πθ(yw |x)

πref(yw |x)
− log πθ(yl |x)

πref(yl |x)

)
DPO Loss

Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

Symbolic Program

Implies(
And(M(x ,yl),Ref(x ,yw)),
M(x ,yw)

)

modify

− log σ

(
log πθ(yw |x)πref(yl |x)(1−πθ(yl |x))

πθ(yl |x)πref(yw |x)(1−πθ(yw |x))

)
Novel loss

23

Deriving new losses symbolically, from first principles

− log σ

(
log πθ(yw |x)

πref(yw |x)
− log πθ(yl |x)

πref(yl |x)

)
DPO Loss

Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

Symbolic Program

Implies(
And(M(x ,yl),Ref(x ,yw)),
M(x ,yw)

)

modify

− log σ

(
log πθ(yw |x)πref(yl |x)(1−πθ(yl |x))

πθ(yl |x)πref(yw |x)(1−πθ(yw |x))

)
Novel loss

23

Deriving new losses symbolically, from first principles

− log σ

(
log πθ(yw |x)

πref(yw |x)
− log πθ(yl |x)

πref(yl |x)

)
DPO Loss

Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

Symbolic Program

Implies(
And(M(x ,yl),Ref(x ,yw)),
M(x ,yw)

)

modify

− log σ

(
log πθ(yw |x)πref(yl |x)(1−πθ(yl |x))

πθ(yl |x)πref(yw |x)(1−πθ(yw |x))

)
Novel loss

23

Deriving new losses symbolically, from first principles

− log σ

(
log πθ(yw |x)

πref(yw |x)
− log πθ(yl |x)

πref(yl |x)

)
DPO Loss

Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

Symbolic Program

Implies(
And(M(x ,yl),Ref(x ,yw)),
M(x ,yw)

)

modify

− log σ

(
log πθ(yw |x)πref(yl |x)(1−πθ(yl |x))

πθ(yl |x)πref(yw |x)(1−πθ(yw |x))

)
Novel loss

▶ High-level programming language for defining new losses.

23

Deriving new losses symbolically, from first principles

− log σ

(
log πθ(yw |x)

πref(yw |x)
− log πθ(yl |x)

πref(yl |x)

)
DPO Loss

Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

Symbolic Program

Implies(
And(M(x ,yl),Ref(x ,yw)),
M(x ,yw)

)

modify

− log σ

(
log πθ(yw |x)πref(yl |x)(1−πθ(yl |x))

πθ(yl |x)πref(yw |x)(1−πθ(yw |x))

)
Novel lossquestions: How does our logic work? What do we see?

23

How does the logic work?

M(x, yw) M(x, yl) CPO ORPO unCPO

T T ✓ ✓

T F ✓ ✓ ✓

F T

F F ✓

Implies(
M(x ,yl), M(x ,yw)

)

P

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

{ ✓ , }w :=
∏

w|=M(x,y)

πθ(y | x) ·
∏

w|=¬M(x,y)

1− πθ(y | x)

24

How does the logic work?

M(x, yw) M(x, yl) CPO ORPO unCPO

T T ✓ ✓

T F ✓ ✓ ✓

F T

F F ✓

Implies(
M(x ,yl), M(x ,yw)

)

P

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

{ ✓ , }w :=
∏

w|=M(x,y)

πθ(y | x) ·
∏

w|=¬M(x,y)

1− πθ(y | x)

24

How does the logic work?

M(x, yw) M(x, yl) CPO ORPO unCPO

T T ✓ ✓

T F ✓ ✓ ✓

F T

F F ✓

Implies(
M(x ,yl), M(x ,yw)

)

P

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

{ ✓ , }w :=
∏

w|=M(x,y)

πθ(y | x) ·
∏

w|=¬M(x,y)

1− πθ(y | x)

▶ Formula probability P computed as a weighted count
∑

✓
w

(Chavira and

Darwiche, 2008), loss is − log, semantic loss (Xu et al., 2018).

24

How does the logic work?

M(x, yw) M(x, yl) CPO ORPO unCPO

T T ✓ ✓

T F ✓ ✓ ✓

F T

F F ✓

Implies(
M(x ,yl), M(x ,yw)

)

P

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

{ ✓ , }w :=
∏

w|=M(x,y)

πθ(y | x) ·
∏

w|=¬M(x,y)

1− πθ(y | x)

24

How does the logic work?

M(x, yw) M(x, yl) CPO ORPO unCPO

T T ✓ ✓

T F ✓ ✓ ✓

F T

F F ✓

Implies(
M(x ,yl), M(x ,yw)

)

P

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

{ ✓ , }w :=
∏

w|=M(x,y)

πθ(y | x) ·
∏

w|=¬M(x,y)

1− πθ(y | x)

24

How does the logic work?

M(x, yw) M(x, yl) CPO ORPO unCPO

T T ✓ ✓

T F ✓ ✓ ✓

F T

F F ✓

Implies(
M(x ,yl), M(x ,yw)

)

P

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

{ ✓ , }w :=
∏

w|=M(x,y)

πθ(y | x) ·
∏

w|=¬M(x,y)

1− πθ(y | x)

ℓx︸︷︷︸
column

:= − log σ

(
log

∑
✓

w∑
w

)
︸ ︷︷ ︸

log ratio of ✓ w and w counts

ffffffffffffffffffffffffffffffffffff

24

How does the logic work?

M(x, yw) M(x, yl) CPO ORPO unCPO

T T ✓ ✓

T F ✓ ✓ ✓

F T

F F ✓

Implies(
M(x ,yl), M(x ,yw)

)

P

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

{ ✓ , }w :=
∏

w|=M(x,y)

πθ(y | x) ·
∏

w|=¬M(x,y)

1− πθ(y | x)

ℓx︸︷︷︸
column

:= − log σ

(
log

∑
✓

w∑
w

)
ffffffffffffffffffffffffffffffffffff

= − log σ

(
log

πθ(yw | x)(1− πθ(yl | x)
πθ(yl | x)(1− πθ(yw | x)

)
︸ ︷︷ ︸

ℓORPO, Pθ(P|one hot)

24

How does the logic work?

M(x, yw) M(x, yl) CPO ORPO unCPO

T T ✓ ✓

T F ✓ ✓ ✓

F T

F F ✓

Implies(
M(x ,yl), M(x ,yw)

)

P

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

{ ✓ , }w :=
∏

w|=M(x,y)

πθ(y | x) ·
∏

w|=¬M(x,y)

1− πθ(y | x)

ℓx︸︷︷︸
column

:= − log σ

(
log

∑
✓

w∑
w

)
ffffffffffffffffffffffffffffffffffff

= − log σ

(
log

πθ(yw | x)
πθ(yl | x)

)
︸ ︷︷ ︸

ℓCPO, ∼Pθ(P|one true)

24

How does the logic work?

M(x, yw) M(x, yl) CPO ORPO unCPO

T T ✓ ✓

T F ✓ ✓ ✓

F T

F F ✓

Implies(
M(x ,yl), M(x ,yw)

)

P

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

{ ✓ , }w :=
∏

w|=M(x,y)

πθ(y | x) ·
∏

w|=¬M(x,y)

1− πθ(y | x)

ℓx︸︷︷︸
column

:= − log σ

(
log

∑
✓

w∑
w

)
ffffffffffffffffffffffffffffffffffff

= − log σ

(
log

πθ(yw | x)
πθ(yl | x)

)
︸ ︷︷ ︸

ℓCPO, ∼Pθ(P|one true)

observation: losses differ in hard constraints

24

How does the logic work?

M(x, yw) M(x, yl) CPO ORPO unCPO

T T ✓ ✓

T F ✓ ✓ ✓

F T

F F ✓

Implies(
M(x ,yl), M(x ,yw)

)

P

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

{ ✓ , }w :=
∏

w|=M(x,y)

πθ(y | x) ·
∏

w|=¬M(x,y)

1− πθ(y | x)

24

How does the logic work?

M(x, yw) M(x, yl) CPO ORPO unCPO

T T ✓ ✓

T F ✓ ✓ ✓

F T

F F ✓

Implies(
M(x ,yl), M(x ,yw)

)

P

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

{ ✓ , }w :=
∏

w|=M(x,y)

πθ(y | x) ·
∏

w|=¬M(x,y)

1− πθ(y | x)

▶ Preference structure: equivalent way of expressing truth table
representations (Richardson et al., 2025),

P :=

(
P︸︷︷︸
core

, PC,PA︸ ︷︷ ︸
constraints

)

24

How does the logic work?

M(x, yw) M(x, yl) CPO ORPO unCPO

T T ✓ ✓

T F ✓ ✓ ✓

F T

F F ✓

Implies(
M(x ,yl), M(x ,yw)

)

P

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

{ ✓ , }w :=
∏

w|=M(x,y)

πθ(y | x) ·
∏

w|=¬M(x,y)

1− πθ(y | x)

ℓx︸︷︷︸
column

:= − log σ

(
log

∑
✓

w∑
w

)
ffffffffffffffffffffffffffffffffffff

= − log σ

(
log

πθ(yl | x)πθ(yw | x) + (1− πθ(yl | x))
πθ(yl | x)(1− πθ(yw | x))

)
︸ ︷︷ ︸

novel loss without constraints, Pθ(P|⊤)

24

How does the logic work?

M(x, yw) M(x, yl) CPO ORPO unCPO

T T ✓ ✓

T F ✓ ✓ ✓

F T

F F ✓

Implies(
M(x ,yl), M(x ,yw)

)

P

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

{ ✓ , }w :=
∏

w|=M(x,y)

πθ(y | x) ·
∏

w|=¬M(x,y)

1− πθ(y | x)

ℓx︸︷︷︸
column

:= − log σ

(
log

∑
✓

w∑
w

)
ffffffffffffffffffffffffffffffffffff

= − log σ

(
log

πθ(yl | x)πθ(yw | x) + (1− πθ(yl | x))
πθ(yl | x)(1− πθ(yw | x))

)
︸ ︷︷ ︸

novel loss without constraints, Pθ(P|⊤)

observation: real losses are highly constrained

24

How does the logic work?

M(x, yw) M(x, yl) CPO ORPO unCPO

T T ✓ ✓

T F ✓ ✓ ✓

F T

F F ✓

Implies(
M(x ,yl), M(x ,yw)

)

P

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

{ ✓ , }w :=
∏

w|=M(x,y)

πθ(y | x) ·
∏

w|=¬M(x,y)

1− πθ(y | x)

ℓx︸︷︷︸
column

:= − log σ

(
log

∑
✓

w∑
w

)
ffffffffffffffffffffffffffffffffffff

= − log σ

(
log

πθ(yl | x)πθ(yw | x) + (1− πθ(yl | x))
πθ(yl | x)(1− πθ(yw | x))

)
︸ ︷︷ ︸

novel loss without constraints, Pθ(P|⊤)

note: M(x, yl) → M(x, yw)︸ ︷︷ ︸
goal of optimization

≡ ¬M(x, yl) ∨ M(x, yw)

24

How does the logic work?

M(x, yw) M(x, yl) CPO ORPO unCPO

T T ✓ ✓

T F ✓ ✓ ✓

F T

F F ✓

Implies(
M(x ,yl), M(x ,yw)

)

P

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

{ ✓ , }w :=
∏

w|=M(x,y)

πθ(y | x) ·
∏

w|=¬M(x,y)

1− πθ(y | x)

ℓx︸︷︷︸
column

:= − log σ

(
log

∑
✓

w∑
w

)
ffffffffffffffffffffffffffffffffffff

= − log σ

(
log

πθ(yl | x)πθ(yw | x) + (1− πθ(yl | x))
πθ(yl | x)(1− πθ(yw | x))

)
︸ ︷︷ ︸

novel loss without constraints, Pθ(P|⊤)

note: M(x, yl) → M(x, yw) ≡ ¬M(x, yl) ∨ M(x, yw)︸ ︷︷ ︸
drive probability to zero

24

How does the logic work?

M(x, yw) M(x, yl) CPO ORPO unCPO

T T ✓ ✓

T F ✓ ✓ ✓

F T

F F ✓

Implies(
M(x ,yl), M(x ,yw)

)

P

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

{ ✓ , }w :=
∏

w|=M(x,y)

πθ(y | x) ·
∏

w|=¬M(x,y)

1− πθ(y | x)

ℓx︸︷︷︸
column

:= − log σ

(
log

∑
✓

w∑
w

)
ffffffffffffffffffffffffffffffffffff

= − log σ

(
log

πθ(yl | x)πθ(yw | x) + (1− πθ(yl | x))
πθ(yl | x)(1− πθ(yw | x))

)
︸ ︷︷ ︸

novel loss without constraints, Pθ(P|⊤)

Training dynamics

unconstrained
losses

24

How does the logic work?

M(x, yw) M(x, yl) CPO ORPO unCPO

T T ✓ ✓

T F ✓ ✓ ✓

F T

F F ✓

Implies(
M(x ,yl), M(x ,yw)

)

P

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

{ ✓ , }w :=
∏

w|=M(x,y)

πθ(y | x) ·
∏

w|=¬M(x,y)

1− πθ(y | x)

ℓx︸︷︷︸
column

:= − log σ

(
log

∑
✓

w∑
w

)
ffffffffffffffffffffffffffffffffffff

= − log σ

(
log

πθ(yl | x)πθ(yw | x) + (1− πθ(yl | x))
πθ(yl | x)(1− πθ(yw | x))

)
︸ ︷︷ ︸

novel loss without constraints, Pθ(P|⊤)

Constrainedness is an important property

24

The no reference loss landscape

Known losses Novel lossesSemantic neighborhoods
Entailment

▶ Loss lattice: semantic structure of loss space, ordering.

25

The reference loss landscape

Existing loss (no reference) with reference information

Text

family of losses

▶ The semantics of DPO-style reference losses can be straightforwardly

computed from no reference approaches, much less explored.

25

question: Are any of these losses good?

25

Characterizing dataset semantics?

known loss (baseline)

novel losses

data sub-categories

▶ Finding: Different losses perform better/worse on different subsets of

data, reflecting the different semantics in preference data.

26

Characterizing dataset semantics?

dataset instances

m
ea

n
pr

ob
ab

ilit
y

variability through training

▶ Tracking instance-level training dynamics (Swayamdipta et al., 2020) and

behavior across losses, use to reverse engineer data semantics.

26

Characterizing dataset semantics?

dataset instances

m
ea

n
pr

ob
ab

ilit
y

variability through training

Easy (fast) to learn

▶ Intuition: The speed/ease of training is a proxy for goodness of semantic

fit, similar to small-loss criterion in noisy-label learning (Gui et al., 2021).

26

Characterizing dataset semantics?

dataset instances

m
ea

n
pr

ob
ab

ilit
y

variability through training

Easy (fast) to learn

hard (slow) to learn

▶ Intuition: The speed/ease of training is a proxy for goodness of semantic

fit, similar to small-loss criterion in noisy-label learning (Gui et al., 2021).

26

Characterizing dataset semantics?

dataset instances
m

ea
nt

ra
in

 p
ro

ba
bi

lit
y

variability through training

Easy (fast) to learn

hard (slow) to learn all hard

Winners bad, losers good

▶ Intuition: The speed/ease of training is a proxy for goodness of semantic

fit, similar to small-loss criterion in noisy-label learning (Gui et al., 2021).

26

Characterizing dataset semantics?

dataset instances

m
ea

n
pr

ob
ab

ilit
y

variability through training

Easy (fast) to learn

hard (slow) to learn all hard

more complex

▶ Intuition: The speed/ease of training is a proxy for goodness of semantic

fit, similar to small-loss criterion in noisy-label learning (Gui et al., 2021).

26

Characterizing dataset semantics?

▶ Intuition: The speed/ease of training is a proxy for goodness of semantic

fit, similar to small-loss criterion in noisy-label learning (Gui et al., 2021).Blueprint for much empirical exploration of loss space

26

Conclusions

▶ New ideas about using symbolic techniques to formally characterize the

semantics of LLM algorithms, preference learning.

1. Understanding the full space of loss functions (finding: it’s a huge

space, many novel variations yet to be explored)

2. Understanding the structure of the space and relationships between

different losses (finding: tied to the semantics of the losses).

High-level programming: write a (high-level) symbolic program, or

modify an existing one, compile into a loss and experiment (then repeat)

▶ Decompiling models to symbolic programs: semantics of data,

reinforcement learning, chain-of-thought, LLM agents ...

27

Conclusions

▶ New ideas about using symbolic techniques to formally characterize the

semantics of LLM algorithms, preference learning.

1. Understanding the full space of loss functions (finding: it’s a huge

space, many novel variations yet to be explored)

2. Understanding the structure of the space and relationships between

different losses (finding: tied to the semantics of the losses).

High-level programming: write a (high-level) symbolic program, or

modify an existing one, compile into a loss and experiment (then repeat)

▶ Decompiling models to symbolic programs: semantics of data,

reinforcement learning, chain-of-thought, LLM agents ...

27

Conclusions

▶ New ideas about using symbolic techniques to formally characterize the

semantics of LLM algorithms, preference learning.

1. Understanding the full space of loss functions (finding: it’s a huge

space, many novel variations yet to be explored)

2. Understanding the structure of the space and relationships between

different losses (finding: tied to the semantics of the losses).

High-level programming: write a (high-level) symbolic program, or

modify an existing one, compile into a loss and experiment (then repeat)

▶ Decompiling models to symbolic programs: semantics of data,

reinforcement learning, chain-of-thought, LLM agents ...

27

Conclusions

▶ New ideas about using symbolic techniques to formally characterize the

semantics of LLM algorithms, preference learning.

1. Understanding the full space of loss functions (finding: it’s a huge

space, many novel variations yet to be explored)

2. Understanding the structure of the space and relationships between

different losses (finding: tied to the semantics of the losses).

High-level programming: write a (high-level) symbolic program, or

modify an existing one, compile into a loss and experiment (then repeat)

▶ Decompiling models to symbolic programs: semantics of data,

reinforcement learning, chain-of-thought, LLM agents ...

27

Thank you.

28

Adding a reference model

P:= Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

Whenever the model being
tuned deems the loser to
be a valid generation and
the reference model deems
the winner to be valid, the
tuned model should deem
the winner to be valid too,
and the reference should
deem the loser to be valid.

▶ Peculiar semantics, but the logic makes sense, e.g., we want to maximize

σ

(
log

πθ(yw | x)
πθ(yl | x)

− log
πref(yw | x)
πref(yl | x)

)

negating left side of implication (i.e., making M(x, yl) and Ref(x, yw)

false) and making the right side true is logical.

29

Adding a reference model

P:= Implies(
And(M(x ,yl),Ref(x ,yw)),
And(M(x ,yw),Ref(x ,yl))

)

Whenever the model being
tuned deems the loser to
be a valid generation and
the reference model deems
the winner to be valid, the
tuned model should deem
the winner to be valid too,
and the reference should
deem the loser to be valid.

▶ Peculiar semantics, but the logic makes sense, e.g., we want to maximize

σ

(
log

πθ(yw | x)
πθ(yl | x)

− log
πref(yw | x)
πref(yl | x)

)

negating left side of implication (i.e., making M(x, yl) and Ref(x, yw)

false) and making the right side true is logical.

29

Classical work on preference

Analytic philosophy: Much work on the semantics of pairwise

preference, rich languages for expressing ideas.

(Jeffrey, 1965) Semantic foundations for the logic of preference Rescher (1967)

30

References I

Beurer-Kellner, L., Fischer, M., and Vechev, M. (2023). Prompting is programming: A
query language for large language models. Proceedings of the ACM on
Programming Languages, 7(PLDI):1946–1969.

Bogin, B., Yang, K., Gupta, S., Richardson, K., Bransom, E., Clark, P., Sabharwal, A.,
and Khot, T. (2024). Super: Evaluating agents on setting up and executing tasks
from research repositories. Proceedings of EMNLP.

Bragg, J., D’Arcy, M., Balepur, N., Bareket, D., Dalvi, B., Feldman, S., Haddad, D.,
Hwang, J. D., Jansen, P., Kishore, V., Majumder, B. P., Naik, A., Rahamimov, S.,
Richardson, K., Singh, A., Surana, H., Tiktinsky, A., Vasu, R., Wiener, G.,
Anastasiades, C., Candra, S., Dunkelberger, J., Emery, D., Evans, R., Hamada, M.,
Huff, R., Kinney, R., Latzke, M., Lochner, J., Lozano-Aguilera, R., Nguyen, C.,
Rao, S., Tanaka, A., Vlahos, B., Clark, P., Downey, D., Goldberg, Y., Sabharwal,
A., and Weld, D. S. (2025). Astabench: Rigorous benchmarking of ai agents with a
scientific research suite.

Chavira, M. and Darwiche, A. (2008). On probabilistic inference by weighted model
counting. Artificial Intelligence, 172(6-7):772–799.

Chen, J., Yuan, S., Ye, R., Majumder, B. P., and Richardson, K. (2023). Put your
money where your mouth is: Evaluating strategic planning and execution of llm
agents in an auction arena. arXiv preprint arXiv:2310.05746.

Cheng, J., Clark, P., and Richardson, K. (2025). Language modeling by language
models. Proceedings of Neurips.

31

References II

Dai, J., Pan, X., Sun, R., Ji, J., Xu, X., Liu, M., Wang, Y., and Yang, Y. (2024). Safe
rlhf: Safe reinforcement learning from human feedback. In The Twelfth
International Conference on Learning Representations.

Friedman, D., Wettig, A., and Chen, D. (2023). Learning transformer programs.
Advances in Neural Information Processing Systems, 36:49044–49067.

Gui, X.-J., Wang, W., and Tian, Z.-H. (2021). Towards understanding deep learning
from noisy labels with small-loss criterion. arXiv preprint arXiv:2106.09291.

Jeffrey, R. C. (1965). The logic of decision. University of Chicago press.

Ji, J., Liu, M., Dai, J., Pan, X., Zhang, C., Bian, C., Chen, B., Sun, R., Wang, Y.,
and Yang, Y. (2024). Beavertails: Towards improved safety alignment of llm via a
human-preference dataset. Advances in Neural Information Processing Systems, 36.

Li, Z., Huang, J., and Naik, M. (2023). Scallop: A language for neurosymbolic
programming. Proceedings of the ACM on Programming Languages,
7(PLDI):1463–1487.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., and De Raedt, L. (2018).
Deepproblog: Neural probabilistic logic programming. Advances in neural
information processing systems, 31.

Marra, G., Dumančić, S., Manhaeve, R., and De Raedt, L. (2024). From statistical
relational to neurosymbolic artificial intelligence: A survey. Artificial Intelligence,
page 104062.

32

References III
Meng, Y., Xia, M., and Chen, D. (2024). Simpo: Simple preference optimization with

a reference-free reward. arXiv preprint arXiv:2405.14734.

Merrill, W. and Sabharwal, A. (2023). A logic for expressing log-precision
transformers. Advances in neural information processing systems, 36:52453–52463.

Rescher, N. (1967). The logic of decision and action. University of Pittsburgh Pre.

Richardson, K., Srikumar, V., and Sabharwal, A. (2025). Understanding the logic of
direct preference alignment through logic. Proceedings of ICML.

Richardson, K. and Wijnholds, G. (2025). Lectures on language model programming.

Swayamdipta, S., Schwartz, R., Lourie, N., Wang, Y., Hajishirzi, H., Smith, N. A., and
Choi, Y. (2020). Dataset cartography: Mapping and diagnosing datasets with
training dynamics. arXiv preprint arXiv:2009.10795.

Weiss, G., Goldberg, Y., and Yahav, E. (2021). Thinking like transformers. In
International Conference on Machine Learning, pages 11080–11090. PMLR.

Xu, J., Zhang, Z., Friedman, T., Liang, Y., and Broeck, G. (2018). A Semantic Loss
Function for Deep Learning with Symbolic Knowledge. In International Conference
on Machine Learning, pages 5498–5507.

Yang, A. and Chiang, D. (2024). Counting like transformers: Compiling temporal
counting logic into softmax transformers. arXiv preprint arXiv:2404.04393.

Yang, A., Chiang, D., and Angluin, D. (2024). Masked hard-attention transformers
recognize exactly the star-free languages. Advances in Neural Information
Processing Systems, 37:10202–10235.

33

References IV

Yang, R., Chen, J., Zhang, Y., Yuan, S., Chen, A., Richardson, K., Xiao, Y., and
Yang, D. (2025). Selfgoal: Your language agents already know how to achieve
high-level goals. Proceedings of NAACL.

Yu, H., Xuan, K., Li, F., Zhu, K., Lei, Z., Zhang, J., Qi, Z., Richardson, K., and You,
J. (2025). Tinyscientist: An interactive, extensible, and controllable framework for
building research agents. Proceedings of EMNLP.

Zhang, Y., Yuan, S., Hu, C., Richardson, K., Xiao, Y., and Chen, J. (2024).
Timearena: Shaping efficient multitasking language agents in a time-aware
simulation. Proceedings of ACL.

34

	References

