Understanding the Logic of Generative Al
through Logic and Programming

Kyle Richardson

Allen Institute for Al (Al2)
October 2025

Collaborators: Ashish Sabharwal (Al2), Vivek Srikumar (University of Utah)

A.I2 ARISTO

General purpose large language models (LLMs)

User
n Briefly tell me in a sentence about the International Workshop on
[slfelgg]el@ Symbolic-Neural Learning (SNL) in Japan. If you were to give a talk
what might you talk about?

response

Assistant

@ ChatGPT The International Workshop on Symbolic-Neural Learning (SNL) in
Japan focuses on the integration of symbolic reasoning and neural
networks to advance Al research.

If | were to give a talk, | might discuss "Bridging Symbolic Logic and

Neural Networks: Challenges and Opportunities in Hybrid Al
Systems."

General purpose large language models (LLMs)

l l prompt

response

& chatepr

User

Briefly tell me in a sentence about the International Workshop on
Symbolic-Neural Learning (SNL) in Japan. If you were to give a talk
what might you talk about?

Assistant

The International Workshop on Symbolic-Neural Learning (SNL) in
Japan focuses on the integration of symbolic reasoning and neural

networks to advance Al research.

If | were to give a talk, | might discuss "Bridging Symbolic Logic and
Neural Networks: Challenges and Opportunities in Hybrid Al
Systems."

P General purpose models: trained at massive scales, used as-is and

directly for a wide range of problems.

Models have far exceeded expectations

Language models as agent simulators

LLMs as agents in competitive
environments, games

(A) Open Ascending-Price Auction

Yy [nenzaen
»nf $5000. Any takers?

[B) Bidder Agent Design (C) Examples

Belet
1 Profitsofar @ Marimize proft e e Ve
a

s Diots sopoaiaes
i e o
(@) > S1200fortem2
/ 0 4 ey Bl | PR
o = G-
: SOy :

{ Plamming

yey [et |1 gz
ety | ||} s |- pceana
Q 9 H - Withdraw
ORI << Wi e
® oW T e
N H o
el RN -
y[uemaer) |1 NEH ==/
_ltem 3is $10000. H e eiemisseid

(5 priry st for i e %

(e rmsaoo

Updated Betet
Lo

i 700
i Step 3 Belief pdate | Updstadpin fiensfrenfiensTipal) g
@ 9 \!5 Obiectve | step 4 Replanning. [femafiemsfiem])~

Figure 1: An illustration of|AUCARENA: (A) shows a multi-round, ascending-price auctio:

with an auchoneer announcing the est bids, where bidders publicly decide after private
. (B, presents a bldder agent structure using the Belief-Desire-Intention Model,

i ing ing ing g g)where beliefs and plans are

adjus! ances of updated beliefs and plans,
lllusrratmg a b)dder allocat-mg priority scores to items post-reasoning.

P Can we use LMs to simulate complex social dynamics? (Chen et al.,
2023; Zhang et al., 2024; Yang et al., 2025)

Language models as agent simulators

LLMs as agents in competitive
environments, games

(A) Open Ascending-Price Auction’) Bidder Agent Design (C) Examples

YEOY [ttem3starts at
85000, Any takers?

Beiet
1 Profitsofar @ Marimize profc e 5 P Ve
2 Winningbids a Bader1 USSZ000 USS2000 $8000)

Budget a Blder? LRS00 USS1000 SiBolocem .

» g
£ e ey
N P g .

v ‘We have $8000
i
YEDY | romaidser 1.Any
= e
Auctioneer

vy [S0 tosiger st

o 3oy s b r el -

L v |
'g 1. Step 3:Belief Update UpdatedPlan uw §

Obective Step d:Replanning fofensonsl)

Figure 1: An illustration of|AUCARENA: (A) shows a multi-round, ascending-price auctio:
wu.h an auctwneer announcing the estbids, where bidders publicly decide affer private
. (B g the Belief-Desire-Intention Model,
where beliefs and plans are
adjuste o ffers nstances of updated beliefs and plans,
lllush'anng a bldder a].locatmg pnorlty scores to items post-reasoning.

_item 3is $10000. |

Valuable tool for running social science experiments, testing theories of

language interaction, complex reasoning, adversarial language experts.

Language models as part of complex systems

n ML Experiment Execution Engine

Query=

Machine
learning
experiment

ChatGPT

Model
generated
code

Experiment automation

» SUPER (Bogin et al., 2024), benchmark for setting up and executing

research code repositories, agent benchmarking (Bragg et al., 2025).

Language models as part of complex systems, agents

TINYSCIENTIST: An Interactive, Extensible, and Controllable
L Modeli g by 1 Models Framework for Building Research Agents

Haofei Yu'" sz:ng X\un" Fenghai Li'*
! Zijie Lei T

Junyan Cheng* Peter Clark Kyle Richardson
‘Allen Institute for Al Dartmouth College
je.thedartmouth. edu kyler@allenai.org
% hups:/igithub.comvallenai/genesys

Abstract

Canwe levrage LLMs o mode the process o dicoveringnove anguase model
architectures? Inspired by real research, we propose

et e the comvenonas e of et ation and literature
ch (proposal stage) to design implementation code g:n:munn) geneaive
pre-training, hng

Jaws, our system Genesys employs Ladder of Scales approach;

i, sivcsaialy oviowed, implocecied, sad splocivily vehd &t
increasingly larger model scales (14M~350M parameters) with a narrowing budget
(the number of models we can train at each scale). To help make discovery
efficient and factorizable, Genesys uses a novel genetic programming backbone,
which we show has empirical advantages over commonly used direct prompt
encration workllows (0.5, ~86% percentage poin improvement i successul
design generation, a key bottleneck). We report experiments involving 1,162
newly discovered designs (1,062 fully senied through pre-training) and find the

pet . outperform
GPT2, Namba2, etc., on 6/9 common benchmarks). We couple these results with

"University of Hlinois Urbana-Ch:
*Allen Institute for Artificial l.m:lllgenu

Abstract

Automatc research with Large Language Mod-
els (LLMs) is rapily gaining importance, driv-
in the development o nresinly complex

end rescarch pipelines (Jansen et al., 2025; Lu
etal., 2024; Yamada ctal, 2025; Li et al., 2024b;
Cheng et al., 2025). Recent advances in this arca
Jeverge mehods nluding mligent colbors-

tal, 205 ol uing Sl

g o e, o s, human

s meracion 1o seeler h pro-

ot Howere s worsmtres s o

velopers begin o use and build upon these tols
d pltf

ski et al, 2024), and tree-based search (Y
ctal, 2025) o augment it performanc.

In spite of this success, however, existing auto-

3 work-

and difficult to

tinue o advan

tise Key issues:

Plesity, TINYSCIBNTIST s hecoemil
components of the automaic research work-
flow and proposes an interactive, extensible,

a :
gle 1o engage with the specific agent’s rescarch
progress due (0 the complexity of research intents

1o new toolsand supporsieative growth. We

2025; Liu et al., 2025b), making feedback incorpo-

ive web demonstation’, and a PYPI Python
package’

exist
ing representative frameworks rely on rigid, tool-
025), making it hard

comprehensive system-level ablations and formal results, which give broader her . "
insights into the design of effective autonomous LM -drven discovery systems, anddecioer. e tehckont contatlbiy: oy
Cheng et al. (2025) Yu et al. (2025)

A tool for scientific discovery, automated experiment execution, helping

non-experts engage in research.

Lots of optimism, hubris, Nobel prizes....

Missing semantic and algorithmic foundations.

Missing semantic and algorithmic foundations.

Can symbolic techniques help?

How do we get to general purpose LLMs? recipe

human preferences|

unlabeled Task data (prompt, ranked
corpus (prompt,output) preference)
NS 139
N S
% Claude |

P . Instruction Preference
re-training tuning funing General ChatGPT
Purpose LM
lproduces lproduces lproduces &‘ﬂ

pre-trained LM fine-tuned LM aligned LM ¢

4 4 b 23] response

Training models to
have human-like
preferences

Training models Training models
to generate text on target tasks

How do we get to general purpose LLMs? recipe

unlabeled
corpus

Task data
(prompt,output)

human preferencesj
(prompt, ranked

preference)

Pre-training]

Instruction Preference
tuning tuning

lproduces

lproduces

iproduc

-
pre-trained LM

Ef

\

fine-tuned LM

Ef

aligned LM

4

~

J

Training models
to generate text

Training models
on target tasks

Training models to
have human-like

preferences

prompt

“;\ Claude \‘%

General ChatGPT
Purpose LM

E 3
v

response

unlabeled
corpus

Task data
(prompt,output)

human preferencesj
(prompt, ranked

preference)

P L] .[Instruction] _)[Preference
re-training . .
tuning tuning
lproduces produces; iproduces
s N
pre-trained LM fine-tuned LM aligned LM

Training models
to generate text

Training models

on target tasks

Training models to
have human-like
preferences

How do we get to general purpose LLMs? recipe

prompt

“;\ Claude \‘%

General ChatGPT

Purpose LM

%4
v

response

How do we get to general purpose LLMs? recipe

unlabeled
corpus

Task data
(prompt,output)

human preferencesj
(prompt, ranked

preference)

P L])[Instruction] _)[Preference
re-training . .
tuning tuning
lproduces produces iproduces
s N
pre-trained LM fine-tuned LM aligned LM

Training models
to generate text

Training models
on target tasks

Training models to
have human-like

_preferences /

prompt

“;\ Claude \‘%

General ChatGPT

Purpose LM

%4
v

response

unlabeled

corpus

Model Alignment

Task data
(prompt,output)

-

human preferencesj
(prompt, ranked
preference)

P L] .[Instruction] _)[Preference
re-training . .
tuning tuning
lproduces produces| iproduces
s N
pre-trained LM fine-tuned LM aligned LM

Training models
to generate text

Training models

Training models to
have human-like

on target tasks

Y, @references J

How do we get to general purpose LLMs? recipe

prompt

“;\ Claude \‘%

General ChatGPT

Purpose LM

%4
v

response

How do we get to general purpose LLMs? recipe

human preferencesj
unlabeled Task data (prompt, ranked

prompt

corpus (prompt,output) preference)

P - Instruction Preference
re-training o T General ChatGPT
Purpose LM
lproduces lproduces l produces &‘ﬂ

pre-trained LM fine-tuned LM aligned LM

4 4 D response

Training models to
have human-like
preferences

Training models Training models
to generate text on target tasks

P Rough approximation of the kinds of general purpose models we use.

OLMo: fully open-source general purpose LMs

Model card e L 7 Deploy 2 Usethis model

Editmodel card

I m -
]

= Safetensors
Modelsize 1378 pa
OLMo-2-1124-13B-Instruct

Inference Providers
NOTE: 1/3/2025 UPDATE:

Upon the intal release of OLMo-2 models,we ralized the post-trained models did not share the

pre-tokenization |

models. The new models unde names as the original models, but we ha

the old models available with a postfix 1s Modeltreefor al1enai /OLNo-2-1124-138-In

lleciton of the legacy models. Basemodel

Finetuned

Release Documentation S
Finetuned

OLMo 2 138 Instruct November 2024 i post-trained variant of the OLMo-2 138 November 2024 Finetuned

model, which has undergone supervised finetuning on an OLMo-specific variant of the [Tilu Finetuned (1

dataset] ging tuly jxture and further DPO training Adapters.

on this dataset, and finally RLVR training using this data. Tilu 3is designed for state-of the-art Finetunes

performance on a diversity of tasks in addition to chat, such as MATH, GSM8K, and IFEval. Check out Quantizat

the OLMo 2 paper or Tilu 3 pape for more details!

https://allenai.org/olmo

https://allenai.org/olmo

The landscape of Generative Al research

Model foundations

Architectures, limitations

The landscape of Generative Al research

Model foundations

Architectures, limitations

» What model to use? What kinds of computational problems can models

solve? Limitations

The landscape of Generative Al research

Learning

vrediciion y
Iyl Loss
CE = — Zy]— -logy;
» a
y

Loss functions

input > O * prediction

» How do we train and tune models? Loss function design, optimization

algorithms.

The landscape of Generative Al research

input > AL prediction input) 274 * prediction Y
Loss

target y

Model inference and usage

)
e
. Prompting

Decoding, tools

The landscape of Generative Al research

Model foundations Learning

- prediction v
|Y‘ Loss

CE=-)y;-log¥:
= a y

Architectures, limitations Loss functions

Model inference and usage

Decoding, tools

Al system design
C-l (]
g 1Lg

LLM modeling as programming

Programming techniques for model development

Model foundations 1 opp_index = length - indices - 1
2 flip = select(indices, opp_index,==);

3 reverse = aggregate(flip, tokens);

ayer |

prediction

Architectures, limitations
L]
N\
AN\
Functional]

Programming (Rasp) Figure 4: Top: RASP code for computing reverse
(e.g. reverse(“abc")="cba"). Below, its compila-
tion to a transformer architecture (left, obtained through
draw(reverse, "abcde”) in the RASP REPL), and the at-
tention heatmaps of a transformer trained on the same task
(right), both visualised on the same input. Visually, the atten-

DEmEN

P Programming languages for expressing transformer computation (Weiss
et al., 2021; Yang et al., 2024; Yang and Chiang, 2024).

Programming techniques for model development

Learning

Declarative style
programming
(Scallop)

// File path_planner.scl
type actor(x: i32, y: i32), goal(x: i32, y: i32),

enemy (x: 32, y: 132)

const UP = @, DOWN = 1, RIGHT = 2, LEFT = 3
rel safe_cell(x, y) = range(e, 5, x), range(0, 5, y), not enemy(x, y)

rel edge(x, ¥, x, yp, UP) = safe_cell(x, y), safe_cell(x, yp), yp ==y * 1
/7 Rules for DOWN, RIGHT, and LEFT edges are omitted..

rel next_pos(p, 4, a) = actor(x, y), edge(x, y, p, d, a)
10 rel path(x, y, x, y) = next_pos(x, y,)

11 rel path(x1, y1, x3, y3) = path(x1, y1, x2, y2),
12 rel next_action(a) = next_pos(p, a,), path(p, d,

edge(x2, y2, x3, y3,)
r,), goal(r, s)

Fig. 3. The logic program of the PacMan-Maze application in Scallop.

P Loss design via logical and probabilistic programming, neuro-symbolic

modeling (Li et al., 2023; Manhaeve et al., 2018).

Programming techniques for model development

Structured imperative
programming
(LMQL)

Model inference and usage

Prompting
Al system design

Decoding, tools —> CT_]M_> % -,-»[:]
—)

o0
g

user

P Prompting as (imperative) programming (Beurer-Kellner et al., 2023).

Declarative-style programming, loss function design.

Declarative-style programming for preference modeling

unlabeled
corpus

Task data
(prompt,output)

human preferencesj
(prompt, ranked

preference)

Pre-trainin Instruction Preference
9 tuning tuning
lproduces lproduces l produces
pre-trained LM fine-tuned LM aligned LM

A

B4

4

Training models
to generate text

Training models
on target tasks

Training models to
have human-like

_preferences /

prompt
(NS e
‘@\ Claude -

General ChatGPT

Purpose LM

%4
v

response

Today: Logical and probabilistic programming of preference losses,

semantic characterizations.

Declarative-style programming for preference modeling

unlabeled

corpus

Task data
(prompt,output)

human preferences;
(prompt, ranked
preference)

Pre-trainin Instruction Preference
o tuning tuning
lproduces lproduces l produces
pre-trained LM fine-tuned LM aligned LM

BEf

B4

=4

Training models
to generate text

Training models
on target tasks

Training models to
have human-like

_preferences /

prompt

[N e
‘) Claude

4

General ChatGPT

Purpose LM

%4
v

response

Questions: What do we do when we tune models to preferences? Can

these underlying principles help us to discover better algorithms?

Declarative-style programming for preference modeling

unlabeled

corpus

Task data
(prompt,output)

human preferences;
(prompt, ranked
preference)

Pre-trainin Instruction Preference
o tuning tuning
lproduces lproduces l produces
pre-trained LM fine-tuned LM aligned LM

BEf

B4

=4

Training models
to generate text

Training models
on target tasks

Training models to
have human-like

_preferences /

prompt

[N e
‘) Claude

4

General ChatGPT

Purpose LM

%4
v

response

Questions: What do we do when we tune models to preferences? Can

these underlying principles help us to discover better algorithms?

human preferences;
unlabeled Task data (prompt, ranked

corpus (prompt,output) preference)

,_A, prompt

—

&
N4

user FY R
v > Claude |7
Pre-traini Instruction Preference
re-training fUning i General ChatGPT
Purpose LM

pre-trained LM fine-tuned LM aligned LM

4 D =D response

produces produces produces

Training models to
have human-like
preferences

Training models Training models
to generate text on target tasks

Preference learning and alignment

Offline preference alignment in a nutshell

P Given an offline or static dataset consisting of pairwise preferences for
input x:
Dy = {(X('),yfv’)vyf'))}
i=1

optimize a policy model y ~ mg(- | x) (LLM) to such preferences.

Offline preference alignment in a nutshell

P Given an offline or static dataset consisting of pairwise preferences for
input x:
D. — (1)
b= (<7, ¥y,)
i=1

optimize a policy model y ~ mg(- | x) (LLM) to such preferences.

Safety example (Dai et al., 2024; Ji et al., 2024)

x : Will drinking brake fluid kill you?
i = No, drinking brake fluid will not kill you

w : Drinking brake fluid will not kill you, but it can be extremely
dangerous... [it] can lead to vomiting, dizziness, fainting,

Offline preference alignment in a nutshell

P Given an offline or static dataset consisting of pairwise preferences for
input x:
D. — (1)
b= (<7, ¥y,)
i=1

optimize a policy model y ~ mg(- | x) (LLM) to such preferences.

Safety example (Dai et al., 2024; Ji et al., 2024)

x : Will drinking brake fluid kill you?
i = No, drinking brake fluid will not kill you

w : Drinking brake fluid will not kill you, but it can be extremely
dangerous... [it] can lead to vomiting, dizziness, fainting,

Note: What constitutes a winner or loser is fuzzy, datasets are very noisy

and aggregate many different kinds of preferences.

1. Unclear what is actually in our datasets

Direct Preference Alignment (DPA) approaches

Direct Preference Optimization:
Your Language Model is Secretly a Reward Model

Rafael Rafailov*! Archit Sharma*! Eric Mitchell*!
Stefano Ermon'? Christopher D. Manning’ Chelsea Finn'

fStanford University CZ Biohub
{rafailov,architsh,eric.mitchell}@cs.stanford.edu

Abstract

While large-scale unsupervised language models (LMs) learn broad world knowl-
edge and some reasoning skills, achieving precise control of their behavior is
difficult due to the completely unsupervised nature of their training. Existing
methods for gaining such steerability collect human labels of the relative quality of
model generations and fine-tune the unsupervised LM to align with these prefer-
ences, often with reinforcement learning from human feedback (RLHF). However,
RLHF is a complex and often unstable procedure, first fitting a reward model that
reflects the human preferences, and then fine-tuning the large unsupervised LM
using reinforcement learning to maximize this estimated reward without drifting
00 far from the original model. In this paper we introduce a new parameterization
of the reward model in RLHF that enables extraction of the corresponding optimal
policy in closed form, allowing us to solve the standard RLHF problem with only a
simple classification loss. The resulting algorithm, which we call Direct Prefer-
ence Optimization (DPO), is stable, performant, and computationally lightweight,
eliminating the need for sampling from the LM during fine-tuning or performing
significant hyperparameter tuning. Our experiments show that DPO can fine-tunc
LM:s to align with human preferences as well as or better than existing methods.
Notably, fine-tuning with DPO exceeds PPO-based RLHF in ability to control sen-
timent of generations, and matches or improves response quality in summarization
and single-turn dialogue while being substantially simpler to implement and train.

DPO loss function

Blerenten | ~ 1080 (3log 24625 — 51og 2653)|

Intuitively: reasoning about relationship be-
tween predictions of policy mg and reference s

2. These equations are not easy to understand

DPO loss function

o | —logo(Slog 2483 — glog 24t |

Question: What kind of discrete reasoning prob-
lems do these losses encode?

The many varieties of DPO

DPO loss

Direct Preference Optimization:

Your Language Model is Secretly a Reward Model mo(ywlx) — Blog = mo(yilx)

—logo|(Blog Treet (Yw|X) & Trerix)

Rafael Rafailoy! Archit Sharma! Eric Mitchell'!

Stefano Ermon'! Christopher D. Manning' Chelsea Finn'
Stanford University *CZ Biohub
{rafailov,architsh,eric.mitchell}¢cs. stanford. edu
Abstract

While large-scale unsupervised language models (LMs) lean broad world knowl-
dge 1 some tssonin skl achieving pecise ool of thels bt s

difficult due to the completely unsupervised nature of their training.
s {orpaning such steerbility colec buman lbels o flnerclah\cqul.\lly of
‘model generations and fine-tune the unsupervis 10 align wit fer-

e, oflen vid elnforcement g frm banan feedbnck (RLE) chvcr.
R complex and often unstable procedure, first fitting a reward model d
refets the uman prefercncen and thn fe-ning the e wispervised i
lear t drifting
oo from the ocgon model n hs paper we introduce a ew parameteization

pellcy in closod form, zI|nwm5 10 solve the standard RLHF problem with only a
simple classification loss. The resulting algorithm, which we call Direct Prefer-
ence Optimization (DPO), is stable, performant, and computationally lightweight,
eliminating the need for sampling from the LM during fine-tuning or performing
significant hyperparameter tuning. Our experiments show that DPO can fine-tune
LMs 1o align with human preferences as well as or better than existing methods.
Notably, fine-tuning with DPO exceeds PPO-based RLH in abiliy to control sen-
timent of generations, and matches or improves response quality in summarization
and single-tum dialogue while being substantially simpler to implement and train.

The many varieties of DPO

Direct Preference Optimization:

Your Language Model is Secretly a Reward Model

Rafael Rafailoy! Archit Sharma! Eric Mitchell'!

Stefano Ermon'! Christopher D. Manning' Chelsea Finn'
Stanford University *CZ Biohub
{rafailov,architsh,eric.mitchell}¢cs. stanford. edu

Abstract

While large-scale unsupervised language models (LMs) lean broad world knowl-
edge and some reasoning skills, achieving precise control of their behavior is
difficult due to the completely unsupervised nature of their training. Existing
‘methods for gaining such stcerability collect human labels of the relative quality of
‘model generations and fine-tune the unsupervised LM (o align with these prefer-

ences, often with reinforcement leamning from human fecdback (RLHF). However,

RLHF is a complex and often unstable procedure, first fiting a reward model that
reflects the human preferences, and then fine-tuning the large unsupervised LM

learning driftin
t00 far from the original model. In this paper we introduce a new parameterization
of inRLI

icy in closed form, allowing us to solve the standard RLHF problem with only a
ple classification loss. The resulting algorithm, which we call Direct Prefer-
simization (DPO), s stable, performant, and computationally lightwei

ciminating the need for sampling fom the LM during foe-tuning or performing
significant hyperparameter tuning. Our experiments show that DPO can fine-tune

LMs t0 align with human preferences as well as or better than existing methods.
Notably, fine-tuning with DPO exceeds PPO-based RLHE in ability to control sen-

timent of generations, and matches or improves response quality in summarization

and single-tum dialogue while being substantially simpler to implement and train.

DPO loss

o (yi|x)
—logo{ Blog 7 ".ef(Yw\X) —Blog inf(}i/‘x)

l

DPO variants

Method Objective

RRHF (91] max (0, ~ Ly 10g mo(yelz) + rl log mo(ul)) — Alog mo(yel)

SLIC-HF [96] max (0,6 — log mo(yu|) + log mo(u1|)) — Alog ma (yu|z)

DPO[66] —loga (ﬁlﬂg Zelpelsl — Blog ;ﬁj@g\;@)

1PO (6] (1og Z24peke) — 1og 220t — %)

CPO [88] —log o (Blog g (yu|z) — Blog m(wal)) — Alog s (yulz)

KTORS) Ao (Blog 220}) + Ao gzm - Blog 2,
where 2z = E(z)~ [BKL (7o (yl)| | mer(yl2))]

ORPO [42] —logps(yule) — Aloga (log Halelel, jop cbelula)

where py (|

= e (i log)

RDPO(64] ~logo (Blog Z24ele) — Blog 22483 + (alyl ~ alu))
SimPO —logr (7 log mo(yale) - & log mo(ule) —)

from Meng et al. (2024)

No reference approaches (e.g., CPO, ORPO, only involves a single model)

versus multi-model, reference approaches (DPO).

10

The many varieties of DPO

DPO loss

Direct Preference Optimization:

Your Language Model is Secretly a Reward Model “logo(Blog 2 — Blog T mo(yilx)
"rev(Yw\X) € Toer(VIlx)
Rafael Rafailov"’ Archit Sharma! Eric Mitchell*!
Stefano Ermon'* Christopher D. Manning' Chelsea Finn'
Stanford University *CZ Biohub D P 0
entaston, oo e S snto. variants
Abstract Method _ Objective
While large-scale unsupervised language models (LMs) learn broad world knowl- RRHF[91] max (0 — iy log mo(yule) + iy log ""(V"I)) — Alog mo(yuz)
edge and some reasoning skills, achieving precise control of their behavior is X — -
difficult due to the completely unsupervised nature of their training. Existing SLIC-HF [96] _max (0,6 — log mp(yu|e) + log T (u1|z)) — Aog ma (yu|z)
‘methods for gaining human labels of the DPO66] —logor (mﬂg 2oyl — Blog :“imﬁ)
model generations and fine-tune the unsupervised LM to align with thes prefer- iz dus
ences, often with reinforcement leamning from human feedback (RLHF). However, eloale) .
RLHF is a complex and often unstable procedure, first fitting a reward model that 1PO[6] (1"5 Telhih —tog Fey - T)
reflects the bmanpeeences,ad e e i U g uspervied L PO —Toge (Blogmelucle) - Floame(ie)) —arelocld)
o far from the ong-in“a:1 l]'-mdel In this paper we introduce a new parameterization KTOM9) Ao (ﬁ log Zee=fth —) o gz"‘ “Blog wmx)v)
where zu = E(z)~p [*fK-L o (yl2)||mrer(ylz))]

icy in closed form, allowing us t0 solve the standard RLHF problem with only a

ORPO [42] —log po(yulz) — Aog o (log el jog petulz)
climinating the need for sampling from the LM during fine-tuning or performing nere pa(u12) = exp (L log ma(y
significant hyperparameter wning. Our experiments show that DPO can fine-tune where pfole) = exp (108 oo1))
LMs to align with human preferences as well s or bette than cxisting methods. Tom =2 e
Notably, fine-tuning with DPO exceeds PPO-based RLHF in abiliy to control sen- RDPO[64] —logo (Blog Z24le) — Blog 224085 + (alyl - alu)
timent of gencrations, and matches or improves response quality in summarization
and single-turn dialogue while being substantially simpler to implement and train. SimPO ~logo (w 1 log ma(yalo) — £ log mo(ulz) ~7)

from Meng et al. (2024)

Questions: How are all these variations related to one another, nature of

the space of losses?

Formalization of preference losses

10

Going away from these opaque equations

10

Preference learning as a discrete reasoning problem

Loss Function ¢

_ m(ywlx) To(vix)
log o (log 7 i) — 108 mef(mx))

Preference learning as a discrete reasoning problem

Loss Function ¢

_ m(ywlx) To(vix)
log o (log 7 i) — 108 mef(mx))

T

Two models, four predictions

Preference learning as a discrete reasoning problem

Loss Function ¢

_ m(ywlx) To(vix)
log o (log 7 i) — 108 mef(mx))

T

Two models, four predictions

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?

Preference learning as a discrete reasoning problem

Symbolic Program P Loss Function /
Implies(
And(M(x,ys),Ref(x,yw)), o Teywlx) To(vix)
And(M(x,yw), Ref(x,y/)) log o (log Tref(Yw|) log Wref()il‘x)
)

T

High-level model behavior

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?

Preference learning as a discrete reasoning problem

Symbolic Program P Loss Function /
Implies(
And(M(x,y;),Ref(x,yw)), _ mo(ywlx) mo(y1x)
And(M(x,yw), Ref(x,y/)) log o { log Tref(Yw|) log Tref(y1]x)
)
Decompilation < » Compilation

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?

Preference learning as a discrete reasoning problem

Symbolic Program P Loss Function /
Implies(
And(M(x,y;),Ref(x,yw)), _ mo(ywlx) mo(y1x)
And(M(x,yw), Ref(x,y/)) log o { log Tref(Yw|) log Tref(y1]x)
)
Decompilation < » Compilation

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?

Preference learning as a discrete reasoning problem

Symbolic Program P Loss Function /
Implies(
And(M(x,y;),Ref(x,yw)), _ mo(ywlx) mo(y1x)
And(M(x,yw), Ref(x,y/)) log o { log Tref(Yw|) log Tref(y1]x)
)
Decompilation < » Compilation

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?

1. Compilation: Translating specifications into loss, well studied.

11

interpret derive

Formula P—————>differential logic=——3»L0ss /

Logic as loss, learning to satisfy (Marra et al., 2024)

11

Preference learning as a discrete reasoning problem

Symbolic Program P Loss Function /
Implies(
And(M(x,y;),Ref(x,yw)), _ mo(ywlx) mo(y1x)
And(M(x,yw), Ref(x,y/)) log o { log Tref(Yw|) log Tref(y1]x)
)
Decompilation < » Compilation

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?

1. Compilation: Translating specifications into loss, well studied.

2. Decompilation:Losses to specifications (inverse), less explored.

11

interpret derive

Formula P————>differential logic=———3»Loss /

Loss as logic (Richardson et al., 2025)

11

Formal analysis via decompilation in general

Model

Transformer weights

Formal analysis via decompilation in general

Symbolic Program

RASP, LTL, FO(M)

Model

Transformer weights

12

Formal analysis via decompilation in general

Symbolic Program

RASP, LTL, FO(M)

Model

Decompilation ¢

Transformer weights

P We know what the target languages are (Weiss et al., 2021; Merrill and Sabharwal,

% Compilation

2023; Yang and Chiang, 2024), how to compile, decompile (Friedman et al., 2023).

12

Formal analysis via decompilation in general

Model Behavior

CoT Trace

Formal analysis via decompilation in general

Symbolic Program Model Behavior

? CoT Trace

Decompilation ¢ » Compilation

Formal analysis via decompilation in general

Symbolic Program Model Behavior
? CoT Trace
Decompilation ¢ » Compilation

P Not always clear what the target programming language is or should be.

Language model programming: the languages and formal interfaces
used for for doing such analysis (Richardson and Wijnholds, 2025).

13

Language model programming: ESSLLI 2025

Lecturers

Kyle Richardson (Allen Institute for Al)

Gijs Wilnholds (Leiden Institute of Advanced Computer Science)

Slides

lecture

" i i RASP.

lecture 2: declarative approaches to model training and fine-tuning, the semantic loss and weighted model
counting, other approaches.

lecture 3: high-level techniques for dir i and LLM alignment, formal
i of ions.
lecture 4: declarati ilistic approaches to test-time i LM ion, consistency,

tillng LLMs to tractable models, logic programming.

lecture 5: chain-of-thought, imper (discrete) probabilistic
programming,

background logic notes, extended notes on transformers

extra lectures Prompting as Gra

Helpful Resources

Below are some pointers to code resources:

« languages [scallop], [problog], [pyDatalog], [ima] [rasp], [NumPy Rasp), [deepprobiog]
+ automated reasoning tools/circuits 23 solverl, [python-sat], [pysdd], [cirkit

+ NLP and general ML [transformers], [PyTorch), [pylon-lb], [nf datasets], [nf hub}

+ other useful utilties [sympy]

Useful tutorials: scratch lecture 1), Lectures on Probabilistic
Programming, Tractable Probabilistic Models

https://github.com/yakazimir/LMProgramming

https://github.com/yakazimir/LMProgramming

What is the right programming language for preference?

14

https://github.com/yakazimir/LMProgramming

What do these programs tell us?

Implies(
M(x, Y1) M(x,yw)

)

What do these programs tell us?

Model predicts loser Model predicts winner
/

Implies(
; M(x,y) M(X, yw)

Conceptually: Model predications are logical propositions, Boolean

variables inside of formulas, weighted by prediction probability.

What do these programs tell us?

Model predicts loser Model predicts winner
/

Implies(
M(x, Y1) M(x,yw)

)

w(M(x,y)) = mu(y | x)

Conceptually: Model predications are logical propositions, Boolean

variables inside of formulas, weighted by prediction probability.

What do these programs tell us?

Model predicts loser Model predicts winner
/

Implies(
) M(x,y) M(X, yw)

Whenever the model deems the loser
to be a valid generation, it should
deem the winner to be valid too.

Conceptually: Predictions are connected through Boolean operators,

express constraints on predictions; pg as formulas.

15

Uncovering the natural logic of these algorithms

Model predicts loser Model predicts winner
/

Implies(
M(x, Y1) M(X,yw)

)

Whenever the model deems the loser
to be a valid generation, it should
deem the winner to be valid too.

Assumption: Every loss function has an internal logic that can be

expressed in this way, we want to uncover that logic.

15

Uncovering the natural logic of these algorithms

Model predicts loser Model predicts winner
/

Implies(
M(x, Y1) M(x,yw)

)

Whenever the model deems the loser
to be a valid generation, it should
deem the winner to be valid too.

Running example: This program and semantics is foundational to many

DPO-style losses.

15

Uncovering the natural logic of these algorithms

P x
Implies(o(yl)

M(x,y1), M(X,yw)

Whenever the model deems valid
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

yex”

Model behavior: Programs tell us about the structure of the model's
output distribution (right).

Uncovering the natural logic of these algorithms

P
Implies(oyl o)

M(x,y1), M(X,yw)

And(valid
M(X,Yw),
Not(M(x,y,)))

yex”

Model behavior: Programs tell us about the structure of the model's
output distribution (right).

17

Uncovering the natural logic of these algorithms

P
Implies(o(yl=)

M(x,y1), M(X,yw)

And(valid
M(X,yYw),
Not(M(x,y,)))

yex”

Observation: The second program is more strict than the first, involves

semantic entailment.

Compilation and decompilation again

P

Compilation

Implies(
MO Y1) M0 yw)

—

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the

winner to be valid too.

{(D,0) = —log Py(P | D,0)
—_—

probabilistic logic

18

Compilation and decompilation again

P

Compilation

Implies(
MO Y1) M0 yw)

—

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the

winner to be valid too.

{(D,0) = —log Py(P | D,0)
—_—

probabilistic logic

What we did: defined a novel probabilistic logic for preference modeling,

interpret formulas in that logic to derive differentiable losses.

18

Compilation and decompilation again

P Decompilation

Implies(

) MOy) M0GY) e—— lepp = — Iogo(log fri((nylb)))

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

Compilation and decompilation again

P

Implies(

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

Decompilation

) MOy) M0GY) e—— lepp = — Iogo(log 7;66((};’VIV||)):))

lepo(D,) = —log Py(P | D, 0)

correctness property

)

18

Compilation and decompilation again

P

Decompilation

Implies(
MO Y1) M0 yw)

e lepo = — |0g0’<|0g

Whenever the model deems

the loser to be a valid gen- €CPD(D7 9) = —log PQ(P ‘ D, 9)

eration, it should deem
winner to be valid too.

ﬂ'«9(}’W|X)
To(yilx)

the
correctness property

The second thing we did: Defined a mechanical procedure for

decompilation, proved its correctness, invariance to choice of f.

18

lllustration of approach and results (Richardson et al., 2025)

Input Loss eORpU

Oddso(yiw|x)
floga(log oad?g(yy,\:)>

lllustration of approach and results (Richardson et al., 2025)

Input Loss eogpg

Oddso(yiw|x)
floga(logioddzz(i/‘:))

h)

Py _ Polywlx)(1—Po(yilx))

5 Po(yilx)(1=Pa(ywx))

>

Core loss equation

lllustration of approach and results (Richardson et al., 2025)

Input Loss eogpg

Oddso(yiw|x)
floga(logioddzz(i/‘:))

h)

25 Polywlx)(1=Po(ylx)) SEM(ph) = M(%, yw) A M(x, 1)

b Po(yilx)(1—Po(ywlx)) SEM(/)g) = M(x, y1) A =M(X, yw)

>

Core loss equation Compositional translation

lllustration of approach and results (Richardson et al., 2025)

Input Loss Lorpo Preference structure P

M, y1)s M(xayw))
Pc := XOR(M(x,y1),M(yw)))
Py:=1

Oddsg (y|x)

P:= Implies(
—logo (log Lds‘”“‘“)

h)

25 Polywlx)(1=Po(ylx)) SEM(p5) = M(x, yw) A =M(x,y1)

b Po(yilx)(1—Po(ywlx)) SEM(/)g) = M(x, y1) A =M(X, yw)

>

Core loss equation Compositional translation

lllustration of approach and results (Richardson et al., 2025)

Thm.

compilation decompilation

Input Loss Lorpo Preference structure P

M0Gyi)s M yw))

P:= Implies(
—logo (log Oddse(yw\x)>

Oddsg (y/|x) Pc := XOR(M(x,y1),M(yw)))
Py:=1
Py _ PolywlX)(1=Po(v|x)) SEM(ph) = M(%, yw) A M(x, 1)

5 Po(yilx)(1=Pa(ywx))

>

SEM(p§) = M(x, yi) A =M(x, yu)

Core loss equation Compositional translation

19

lllustration of approach and results (Richardson et al., 2025)

Thm.

compilation decompilation

Input Loss Lorpo Preference structure P

M0Gyi)s M yw))

P:= Implies(
—logo (log Oddse(yw\x)>

Oddsg(yi]x) Pc := XOR(M(x,y1),M(yw)))
Py:=1
Py _ Po(ywlx)(1=Po(yi|x)) SEM(p5) = M(x, yw) A —M(x,y1)

5 Po(yilx)(1=Pa(ywx))

>

SEM(p§) = M(x, yi) A =M(x, yu)

Core loss equation Compositional translation

P Preference structure, a core construct in our logic, encoding for

preference losses, has a natural Boolean interpretation.

19

question: Why is this useful to do?

19

How many preference loss functions are there?

19

Why is this useful? understanding the space

p)

Implies(
MOy) M0 yw)

p(2)

And(
M(X1Yw),
Not(M(x,y/)))

Boolean functions, 2 variables

e
M(x, yw) M(x,y/) SIONN-IE)

T T v X

T F v v

F T X X

F F v X

20

Why is this useful? understanding the space

p() Boolean functions, 2 variables

Implies(/
: MO, yi) MO Yw) M(x,yw) M(x,y,) [PO PO
T T v X
p®) T F 7
And(F T X X
M(X,Yw),
Not(M(x,y/))) i i L _

P Every program (in our logic) is pair of Boolean functions (in n variables),

corr. to v and X, leads to 4% possible loss functions.

20

Why is this useful? understanding the space

p() Boolean functions, 2 variables
Tmplies(. —
) e 1vw) 10y [POO_P0)
T T v X
P T F |l v v
And(F T X X
M(X1Yw),
Nox{(x,y1))) F F 1y X

Loss creation will end up being equivalent to drawing different sets of
v sand X (or blank marks) in a truth table.

20

Why is this useful? understanding the space

p() Boolean functions, 2 variables
Tmplies(. —
) e 1vw) 10y [POO_P0)
T T v X
P T F |l v v
And(F T X X
M(X1Yw),
Nox{(x,y1))) F F 1y X

no reference: 256 losses

Loss creation will end up being equivalent to drawing different sets of
v sand X (or blank marks) in a truth table.

Loss functions as truth tables

Implies(
And(M(x,y/), Ref (X, yw),
And(M(x,yw),Ref(x,y/))

4 variables

Ref (X, yw) M0 y1) Ref(x,yr) M(x,yw)

X

e e B B B e B B M M B B e 2 i
e B B B B e e 3 B B B B B e s
Eon B B W B T e M B e B 3 e B B i B
b T e W B i B i s B B Bt e B B Bt |

w/ reference: 4,294,967,296 losses

21

answer: loads.

21

question: How are losses related to one another?

21

Why is this useful? understanding the structure

p() semantics: P(® = P(1)
Implies((/
) e Hye) Gy [PO PO
T T v X
P T F |l v v
And(F T X X
M(X,Yw)
not (4(x.:))) = F v X

Proposition (Xu et al., 2018): Loss behavior is monotonic w.r.t semantic
entailment: if P®® = PW then ¢(D,6,P®) > ¢(D,0,PW).

Why is this useful? understanding the structure

p() semantics: P(® = P(1)
Implies((/
) e Hye) Gy [PO PO
T T v X
P T F |l v v
And(F T X X
M(X,Yw)
not (4(x.:))) = F v X

Proposition (Xu et al., 2018): Loss is equivalent under semantic
equivalence: If P® = PW then ¢(D,6,P?) = ¢(D,0,PY).

Why is this useful? understanding the structure

p() semantics: P(® = P(1)
Implies((/
) e Hye) Gy [PO PO
T T v X
P T F |l v v
And(F T X X
M(X,Yw)
not (4(x.:))) = F v X

Theorem: ((D,0,P®) > ¢(D,0,PW) (the loss of P is contained in the
loss of P?).

22

answer: Losses are related through their semantics

22

Why is this useful? understanding the structure

p() semantics: P(® = P(1)
Implies((/
) e Hye) Gy [PO PO
T T v X
P T F |l v v
And(F T X X
M(X,Yw)
not (4(x.:))) = F v X

Practical strategy: Start with empirically successful losses, modify

semantics (make more or less constrained), then experiment accordingly.

22

Deriving new losses symbolically, from first principles

Symbolic Program

Implies(

AHd(M(X »Yw)v Ref(x'y/))

)

And(M(x,y;), Ref(x,yw)),

DPO Loss
nalywl®) 1 malylx)
Teetw) 108 gl

— Ioga(log

)

Deriving new losses symbolically, from first principles

Symbolic Program DPO Loss

Implies(
And(M(x,y/),Ref(x,yw)), _ me(ywlx) mo(yilx)
And(M(x,yw), Ref(x,y/)) log | log Tref(Yw|x) log Trefl(y1[X)

)

modify
-

~

Implies(
And(M(x,y;),Ref(x,yw)),
M(xvYW)

)

Deriving new losses symbolically, from first principles

Symbolic Program

DPO Loss

Implies(

AHd(M(X »Yw)v Ref(x 'y/))

)

And(M(x,y;), Ref(x,yw)),

_ m(ywlx) mo(yilx)
|Og o < |0g Tref(Yw|x) |0g ﬂref(}’llx)>

modify
-

~

Implies(

M(xvYW)

)

Novel loss

And(M(x,y;),Ref(x,yw)),

N logo (log Ty b)))

o (v |X)Tref(yw [X) (1= (yw |x))

23

Deriving new losses symbolically, from first principles

Symbolic Program DPO Loss
Implies(

And(M(x,ys),Ref(x,yw)), . Toywlx) To(yilx)

And(M(x,yw), Ref(x,y/)) |Og0< log Tref(Yw|x) log ﬂref(}illx)
)

modify Novel loss
~

Implies(

Sy B i) N (X)) (1= (111x))
) M(x, V) —logo (log m(mx)mef(ywwxxkm(yw\x)))

» High-level programming language for defining new losses.

23

questions: How does our logic work? What do we see?

23

How does the logic work?

P
M(x,yw) M(x,y1) CPO ORPO unCPO Tmplies(
T T v X ol MGayi)s M(xyw)
T F v v v
F T X X X \/ Whenever the model deems
F F v the loser to be a valid gen-

eration, it should deem the
winner to be valid too.

24

How does the logic work?

P
M(x,yw) M(x,y1) CPO ORPO unCPO Tmplies(
T T v X v (__ M(x,y/), M(x,yw)
T F v v v
F T X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-

/ eration, it should deem the
winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

win(x,y) whN(x.y)

24

How does the logic work?

P
M(x,yw) M(x,y1) CPO ORPO unCPO Tpiaea(
T T v X ol MOy, MO yw)
T F v v v

i i X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-
/ eration, it should deem the

winner to be valid too.

{v . X}t= TII mylx)- Il 1-me(ylx)
whN(x,) wSH(x,y)

P Formula probability P computed as a weighted count > v/ ,, (Chavira and
Darwiche, 2008), loss is — log, semantic loss (Xu et al., 2018).

24

Available online at www.sciencedirect.com —
"=, ScienceDirect Artificial
Intelligence

Artificial Intelligence 172 (2008) 772-799 _—
www.elsevier.com/locate/artint

On probabilistic inference by weighted model counting *

Mark Chavira *, Adnan Darwiche algorithmic foundation

Computer Science Department, UCLA, Los Angeles, CA 90095, USA
Received 25 August 2006; received in revised form 22 July 2007; accepted 5 November 2007

24

A Semantic Loss Function for Deep Learning with Symbolic Knowledge

Losses computed from weighted model counts
Jingyi Xu' Zilu Zhang? Tal Friedman' Yitao Liang' Guy Van den Broeck '

Abstract

This paper develops a novel methodology for us-
ing symbolic knowledge in deep learning. From
first principles, we derive a semantic loss func-
tion that bridges between neural output vectors
and logical constraints. This loss function cap-
tures how close the neural network is to satis-
fying the constraints on its output. An experi-
mental evaluation shows that it effectively guides
the learner to achieve (near-)state-of-the-art re-
sults on semi-supervised multi-class classifica-
tion. Moreover, it significantly increases the abil-
ity of the neural network to predict ob-

This paper considers learning in domains where we have
symbolic knowledge connecting the different outputs of a
neural network. This knowledge takes the form of a con-
straint (or sentence) in Boolean logic. It can be as simple
as an exactly-one constraint for one-hot output encodings,
or as complex as a output predicti i
for intricate combinatorial objects such as rankings, sub-
graphs, or paths. Our goal is to augment neural networks
with the ability to learn how to make predictions subject to
these ints, and use the bolic k ledge to im-
prove the learning performance.

Most neuro-symbolic approaches aim to simulate or learn

jects, such as rankings and paths. These discrete
concepts are tremendously difficult to learn, and
benefit from a tight integration of deep learning
and symbolic reasoning methods.

y in an end-to-end deep neural network,
or capture i ge in a vector-space embed-
ding. This choice is partly motivated by the need for
smooth differentiable models; adding symbolic reasoning
code (e.g., SAT solvers) to a deep learning pipeline de-

24

How does the logic work?

P
M(x,yw) M(x,y1) CPO ORPO unCPO Tmplies(
T T v X v (__ M(x,y/), M(x,yw)
T F v v v
F T X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-

/ eration, it should deem the
winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

win(x,y) whN(x.y)

>
b = floga(log W)
~~ Z XW

log ratio of v w and X wcounts

24

How does the logic work?

P
M(x,yw) M(x,y1) CPO ORPO | unCPO Tmplies(
T T v X v (__ M(X,y/), M(X,yw)
T F v v v
F T X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-

/ eration, it should deem the
winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

win(x,y) whN(x.y)

>V
b = flogo(log W)
~~ Z XW

column

~ loso mo(yw | X)(1 —mo(y | x)
=l ('°g 7oy 1) — 0 (yer | x))

Lorpo, Pg(P|one hot)

24

How does the logic work?

P
M(x,yw) M(x,y1) CPO ORPO unCPO Tmplies(
T T v X v (__ M(x,y/), M(x,yw)
T F v v v
F T X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-

/ eration, it should deem the
winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

win(x,y) whN(x.y)

>V
b = flogo(log W)
~~ Z XW

column

:fuoga(logw)

mo(yr | x)

Lcpg, ~Pg(P|one true)

24

observation: losses differ in hard constraints

24

How does the logic work?

P
M(x,yw) M(x,y1) CPO ORPO unCPO Tpiaea(
T T v X Ve - M(X,YI)y M(Xv}’w)
T F v v v
i i X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-
/ eration, it should deem the
winner to be valid too.
{v ., X} we= I mlylx)- Il 1-—m(y|x)
wEN(x,y) wE==M(x,y)
Loss Representation P
CE P := M(x,yw), Pc:= 1
CEUnl | P:= And(M(xyw), Not(M(x,y1)))
PC =1
CPO ;5 core semantic formula
P := Implies(M(x,y1), M(X,Yw))
;5 one—true constraint
Pc := 0rM(x,y1), M(x,yw))
ORPO P := Implies(M(x,y1),M(X,yw))

;3 one—hot constraint
Pc := XORM(x,y1), M(X,yw))

24

How does the logic work?

P
M(x,yw) M(x,y1) CPO ORPO unCPO Tpiaea(
T T v X ol M), M(xyw)
T F v v v
i i X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-
/ eration, it should deem the

winner to be valid too.
(v, Xtwi= I m(ylx)- I 1-me(y|x)
whN(x,) wSH(x,y)

P Preference structure: equivalent way of expressing truth table
representations (Richardson et al., 2025),

P=(P ,PcP
(7C7A)

Core constraints

24

How does the logic work?

P
M(x,yw) M(x,y1) CPO ORPO |unCPO Tmplies(
T T v X v M(x,y1), M(X,yw)
T F v v v
F U X X X v/ | Whenever the model deems
F/ F v

the loser to be a valid gen-
/ eration, it should deem the
winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

wiN(x,y) wi—t(x,y)

>
b = floga(log "")
~~ Z XW

column

— tozol 1o mo(yr | X)mo(yw | x) + (1 — mo(yi | X))
=l (' B ol |) — oy [))

novel loss without constraints, Pg(P|T)

24

observation: real losses are highly constrained

24

note: yI(X7 y/) — M(X7 le = _'M(X7 y/) \% M(X7 yW)

goal of optimization

note: M(x,y;) = M(x,yw) = 2M(x,y;) V M(x, yw)

~
drive probability to zero

24

Winner logprob

Training dynamics

! losses

/‘
T cfUNL
! unconstrained

200 400 600 800
Training step

1000

Loser logprob

0 200 400 600 800 1000
Training step

24

Constrainedness is an important property

24

The no reference loss landscape

Entailment
Semantic neighborhoods
/\ Known losses Novel losses
M(X, Yo) A =M(X, Y1) —M(x, y;) / 7 l
gfUnl
ZCEUnl \/
échnl

Lorpo v/
ZCCPO ZunCFO

> <I—

ESCE 71 “*CPO
M(X, Ya) lox v M0 1) = M0 V)

most constrained > least constrained

P Loss lattice: semantic structure of loss space, ordering.

25

The reference loss landscape

family of losses P Existing loss (no reference) with reference information
Mz, yw) A —M(z, y1) —M(z, y1) M(z,y1) = M(Z, Yu)
Re£(, yu) Re£(x, yuw) A M(z, y1) V ~Ref(z, y1)) Re£(x, yw) A (M(z,y1) V jkaf(z, w))
= M(z, yw) A -M(z, y1) = M(z, yw) A -M(z, y1) = = M
120 —[iton bCPO
([P) e)
cfUnl
CUNL ORPO v/ — ToGE0
M(z, yuw)
CPO v 114
15
Ref(z, yuw) A (M(z, y1) V ~Ref(z, y1))
Re£(2, yu) A (WM(, yu) V ~Ref(z, y1)) Az, yw) V “Re(z, y1)) Re£(z, yu) AM(z, y1)
= Mz, yw) A ~M(z, Y1) Ref(z, yuw) = M@, yw) [[= M@, yw) A -M(z, 1) — M(z,yw) A Ref(z, y1)

P The semantics of DPO-style reference losses can be straightforwardly

computed from no reference approaches, much less explored.

question: Are any of these losses good?

25

Characterizing dataset semantics?

known loss (baseline) .
data sub-categories

loss WR% (Lcpo) evol false-qa flan sharegpt ultrachat
novel losses |fczon46.1 (£0.4) [46.1 (£2.2) 51.6 (£2.9) 46.4(£1.7) 46.2(+1.2) 44.1(£1.0)
—> loeone48.9 (£0.8) (453 (£1.9) 34.7 (£6.3) 579 (£1.2) 46.8 (£2.4) 413 (£1.4)
Lecro 52.0 (£0.6)50.7 (£0.5) 50.2 (£0.7) 57.2 (£1.1) 47.2(£1.8) 53.1(£1.9)
Luncpod6.0 (0.2) |45.8 (£0.3) 52.1 (£3.0) 45.7(£0.6) 462 (£2.1) 44.8(£2.1)

Table 5: Comparing performance of Qwen-0. 5B tuned
on new losses (rows) against {cpo based on aggregate
win-rate (WR % (std)) on ultrafeedback test (sec-
ond column) and different test subsets (columns 2-6).

P Finding: Different losses perform better/worse on different subsets of

data, reflecting the different semantics in preference data.

26

Characterizing dataset semantics?

dataset instances

mean probability

0.0 0.1 02 03 0.4

variability through training

P Tracking instance-level training dynamics (Swayamdipta et al., 2020) and

behavior across losses, use to reverse engineer data semantics.

26

Characterizing dataset semantics?

dataset instances

Easy (fast) to learn

mean probability

00 0.1 02 03 04

variability through training

P Intuition: The speed/ease of training is a proxy for goodness of semantic

fit, similar to small-loss criterion in noisy-label learning (Gui et al., 2021).

26

Characterizing dataset semantics?

Easy (fast) to learn dataset instances

mean probability

hard (slow) to learn

00 0.1 02 03 04

variability through training

P Intuition: The speed/ease of training is a proxy for goodness of semantic

fit, similar to small-loss criterion in noisy-label learning (Gui et al., 2021).

26

Characterizing dataset semantics?

Easy (fast) to learn dataset instances

1.0

negation

0.8

meantrain probability

hard (slow) to learn

0.0 01 0.2 03 0.4

variability through training

Winners bad, losers good

P Intuition: The speed/ease of training is a proxy for goodness of semantic

fit, similar to small-loss criterion in noisy-label learning (Gui et al., 2021).

Characterizing dataset semantics?

Easy (fast) to learn dataset instances
. negation gfUNL

mean probability

more complex

hard (slow) to learn

oo 01 02 o3 o4

variability through training

P Intuition: The speed/ease of training is a proxy for goodness of semantic

fit, similar to small-loss criterion in noisy-label learning (Gui et al., 2021).

26

Blueprint for much empirical exploration of loss space

26

Conclusions

P New ideas about using symbolic techniques to formally characterize the

semantics of LLM algorithms, preference learning.

27

Conclusions

P New ideas about using symbolic techniques to formally characterize the

semantics of LLM algorithms, preference learning.

1. Understanding the full space of loss functions (finding: it's a huge
space, many novel variations yet to be explored)

2. Understanding the structure of the space and relationships between
different losses (finding: tied to the semantics of the losses).

27

Conclusions

P New ideas about using symbolic techniques to formally characterize the

semantics of LLM algorithms, preference learning.

1. Understanding the full space of loss functions (finding: it's a huge
space, many novel variations yet to be explored)

2. Understanding the structure of the space and relationships between
different losses (finding: tied to the semantics of the losses).

High-level programming: write a (high-level) symbolic program, or

modify an existing one, compile into a loss and experiment (then repeat)

27

Conclusions

P New ideas about using symbolic techniques to formally characterize the

semantics of LLM algorithms, preference learning.

1. Understanding the full space of loss functions (finding: it's a huge
space, many novel variations yet to be explored)

2. Understanding the structure of the space and relationships between
different losses (finding: tied to the semantics of the losses).

High-level programming: write a (high-level) symbolic program, or

modify an existing one, compile into a loss and experiment (then repeat)

» Decompiling models to symbolic programs: semantics of data,

reinforcement learning, chain-of-thought, LLM agents ...

27

Thank you.

28

Adding a reference model

P:= Implies(
And(M(x,y;),Ref(x,yw)),
And(M(x,yw), Ref (x,y/))

)

Whenever the model being
tuned deems the loser to
be a valid generation and
the reference model deems
— the winner to be valid, the
tuned model should deem
the winner to be valid too,

and the reference should
deem the loser to be valid.

29

Adding a reference model

Whenever the model being
tuned deems the loser to
P:= Implies(be a valid generation and
And(M(x,y/),R.ef(x,yW)), the re.ference model deems
— the winner to be valid, the
And(M(X,yW),Ref(X,y/)) tuned model should deem
) the winner to be valid too,
and the reference should
deem the loser to be valid.

P Peculiar semantics, but the logic makes sense, e.g., we want to maximize

o (1o T3 1) _ o e |)

mo(yr | x) Tref(y1 | X)

negating left side of implication (i.e., making M(x,y/) and Ref(x,yw)
false) and making the right side true is logical.

Classical work on preference

Analytic philosophy: Much work on the semantics of pairwise

preference, rich languages for expressing ideas.

RICHARD C JEFFREY

Second

Edition

THE STATUS OF VARIOUS PREFERENCE PRINCIPLES
Von Chisholm
Pmiennce Principle Wright Sosa Martin
1. pPq — ~(qPp) Vv
. (pPq & gPr) > pPr v
. pPg — ~qP~ P
. ~gP~p—pPq
Pg — (p&~q P(~p&) v

. [~w~g) & ~(~£}g;f;& (gP~g)

waw MUK KR <<
KL<
i+ HHTEHY
PETTITI+E | 4+ ++++++7

g [~(qP~q)&~(~q q) qP~1>]—>PP~P
PP -:{(1: &) P(g &) & (p & ~7)

(
1. £(P &) ;’(q &) & (p & ~7) Plg & ~7))
12. [~(qu) & ~(qu)] _. ~(pPr) v

14. (pv Z’r—u y &

15. [(ﬁ q)]Equ Pr
p q) r v qPy)

17. P(qu) (qu &pPr v

18. (pPg & pPr) — pP(q v ¥)

. (pPr & qPr) — (p & q) Pr

;wm N W -~
X s
’bq p
185
=2
S
2
S
a‘

<<
PITTTI+E

[+ ++++++'%

L+ +

(Jeffrey, 1965)

Semantic foundations for the logic of preference Rescher (1967)

30

References |

Beurer-Kellner, L., Fischer, M., and Vechev, M. (2023). Prompting is programming: A
query language for large language models. Proceedings of the ACM on
Programming Languages, 7(PLDI):1946-1969.

Bogin, B., Yang, K., Gupta, S., Richardson, K., Bransom, E., Clark, P., Sabharwal, A.,
and Khot, T. (2024). Super: Evaluating agents on setting up and executing tasks
from research repositories. Proceedings of EMNLP.

Bragg, J., D'Arcy, M., Balepur, N., Bareket, D., Dalvi, B., Feldman, S., Haddad, D.,
Hwang, J. D., Jansen, P., Kishore, V., Majumder, B. P., Naik, A., Rahamimov, S.,
Richardson, K., Singh, A., Surana, H., Tiktinsky, A., Vasu, R., Wiener, G.,
Anastasiades, C., Candra, S., Dunkelberger, J., Emery, D., Evans, R., Hamada, M.,
Huff, R., Kinney, R., Latzke, M., Lochner, J., Lozano-Aguilera, R., Nguyen, C.,
Rao, S., Tanaka, A., Vlahos, B., Clark, P., Downey, D., Goldberg, Y., Sabharwal,
A., and Weld, D. S. (2025). Astabench: Rigorous benchmarking of ai agents with a
scientific research suite.

Chavira, M. and Darwiche, A. (2008). On probabilistic inference by weighted model
counting. Artificial Intelligence, 172(6-7):772-799.

Chen, J., Yuan, S., Ye, R., Majumder, B. P., and Richardson, K. (2023). Put your
money where your mouth is: Evaluating strategic planning and execution of lIm
agents in an auction arena. arXiv preprint arXiv:2310.05746.

Cheng, J., Clark, P., and Richardson, K. (2025). Language modeling by language
models. Proceedings of Neurips.

31

References |l

Dai, J., Pan, X., Sun, R., Ji, J., Xu, X., Liu, M., Wang, Y., and Yang, Y. (2024). Safe
rlhf: Safe reinforcement learning from human feedback. In The Twelfth
International Conference on Learning Representations.

Friedman, D., Wettig, A., and Chen, D. (2023). Learning transformer programs.
Advances in Neural Information Processing Systems, 36:49044—49067.

Gui, X.-J., Wang, W., and Tian, Z.-H. (2021). Towards understanding deep learning
from noisy labels with small-loss criterion. arXiv preprint arXiv:2106.09291.

Jeffrey, R. C. (1965). The logic of decision. University of Chicago press.

Ji, J., Liu, M., Dai, J., Pan, X., Zhang, C., Bian, C., Chen, B., Sun, R., Wang, Y.,
and Yang, Y. (2024). Beavertails: Towards improved safety alignment of llm via a
human-preference dataset. Advances in Neural Information Processing Systems, 36.

Li, Z., Huang, J., and Naik, M. (2023). Scallop: A language for neurosymbolic
programming. Proceedings of the ACM on Programming Languages,
7(PLDI):1463-1487.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., and De Raedt, L. (2018).
Deepproblog: Neural probabilistic logic programming. Advances in neural
information processing systems, 31.

Marra, G., Dumanti¢, S., Manhaeve, R., and De Raedt, L. (2024). From statistical

relational to neurosymbolic artificial intelligence: A survey. Artificial Intelligence,
page 104062.

32

References Il|

Meng, Y., Xia, M., and Chen, D. (2024). Simpo: Simple preference optimization with
a reference-free reward. arXiv preprint arXiv:2405.14734.

Merrill, W. and Sabharwal, A. (2023). A logic for expressing log-precision
transformers. Advances in neural information processing systems, 36:52453-52463.

Rescher, N. (1967). The logic of decision and action. University of Pittsburgh Pre.

Richardson, K., Srikumar, V., and Sabharwal, A. (2025). Understanding the logic of
direct preference alignment through logic. Proceedings of ICML.

Richardson, K. and Wijnholds, G. (2025). Lectures on language model programming.

Swayamdipta, S., Schwartz, R., Lourie, N., Wang, Y., Hajishirzi, H., Smith, N. A., and
Choi, Y. (2020). Dataset cartography: Mapping and diagnosing datasets with
training dynamics. arXiv preprint arXiv:2009.10795.

Weiss, G., Goldberg, Y., and Yahav, E. (2021). Thinking like transformers. In
International Conference on Machine Learning, pages 11080-11090. PMLR.

Xu, J., Zhang, Z., Friedman, T., Liang, Y., and Broeck, G. (2018). A Semantic Loss
Function for Deep Learning with Symbolic Knowledge. In International Conference
on Machine Learning, pages 5498-5507.

Yang, A. and Chiang, D. (2024). Counting like transformers: Compiling temporal
counting logic into softmax transformers. arXiv preprint arXiv:2404.04393.

Yang, A., Chiang, D., and Angluin, D. (2024). Masked hard-attention transformers
recognize exactly the star-free languages. Advances in Neural Information
Processing Systems, 37:10202-10235.

33

References IV

Yang, R., Chen, J., Zhang, Y., Yuan, S., Chen, A., Richardson, K., Xiao, Y., and
Yang, D. (2025). Selfgoal: Your language agents already know how to achieve
high-level goals. Proceedings of NAACL.

Yu, H., Xuan, K., Li, F., Zhu, K., Lei, Z., Zhang, J., Qi, Z., Richardson, K., and You,
J. (2025). Tinyscientist: An interactive, extensible, and controllable framework for
building research agents. Proceedings of EMNLP.

Zhang, Y., Yuan, S., Hu, C., Richardson, K., Xiao, Y., and Chen, J. (2024).
Timearena: Shaping efficient multitasking language agents in a time-aware
simulation. Proceedings of ACL.

34

	References

