Lecture 3: Learning Transformation Rules

Kyle Richardson

kyle@ims.uni-stuttgart.de

July 4, 2016

Lecture Plan

> paper: ?
» general topics: transformation and rewrite rules, the SILT
algorithm, the CKY algorithm, PCFGs, the EM algorithm.

The Big Picture (reminder)

» Standard processing pipeline

(FOR EVERY X /

. Semantic Parsing MAJORELT : T;
Input sem (FOR EVERY Y /

SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

List samples that contain
every major element Knowledge Representation

Interpretation

[sem] ={S10019,510059, ...}

Lunar QA system (?)

Previous session: Learning from meaning representations

data: (x =two times two plus three,y = (plus (mult 2 2) 3))

» Compositional model : a semantic context-free grammar.

» Learning model: linear classifier on derivation trees.

Previous session: Learning from meaning representations

data: (x =two times two plus three,y = (plus (mult 2 2) 3))

» Compositional model : a semantic context-free grammar.

» Learning model: linear classifier on derivation trees.
> Missing
» Rule extraction : (local) rules that get us from x — y

» Parsing algorithm: generate derivations for a given input x
using such rules.

Transformation and Rewrite Rules

» Decompose translation into a set of local transformations.

data: (X —two multiplied by two plus three,y = (plus (mult 2 2) 3))

(plus (mult 2 2) 3)

(mult 2 2) plus N:3
N: 2 mult N:2 + 3

2 * 2

Transformation and Rewrite Rules

» Decompose translation into a set of local transformations.

data: (X —two multiplied by two plus three,y = (plus (mult 2 2) 3))

(plus (mult 2 2) 3)

T

(mult 2 2) plus N:3

T | |

N: 2 | muilt N:2 + 3

2 * 2

rl: 'two’ —

Transformation and Rewrite Rules

» Decompose translation into a set of local transformations.

data: (X —two multiplied by two plus three,y = (plus (mult 2 2) 3))

(plus (mult 2 2) 3)

(mult 2 2) plus N:3
=]
N: 2 | mult | N:2 + 3
| | |
2 * 2
N : 2 mult

rl: 2 . r2: 'multiplied by’ —

Transformation and Rewrite Rules

» Decompose translation into a set of local transformations.

data: (X —two multiplied by two plus three,y = (plus (mult 2 2) 3))

(plus (mult 2 2) 3)

(mult 2 2) plus N:3

T | |

N: 2 mult | N:2 + 3
| | |
2 * 2

N 2 mult N2
2
rl: 2 r2: * ,rl: 'two' —

Transformation and Rewrite Rules

» Decompose translation into a set of local transformations.

data: (X —two multiplied by two plus three,y = (plus (mult 2 2) 3))

(plus (mult 2 2) 3)

(mult 2 2) /m:
;-
mu‘lt 2
rl: r2: * rl: L N

(mult 2 2)

Not a new idea: Early machine translation

(X =Excel vuelve a calcular valores en libro de trabajo,y =Excel recalculates values

in workbook)

1) A=Excel ——3— A’=Excel
2) B=valores ﬁ" B’ = values

C=libro

3)

de ﬁ-‘ C’ = workbook

F = trabajo

D = volver

Suf;r/\ D’ = recalculate
4)
1 E =calcular Subj Obj| in

Obyf e 1 2 3

2 3

10

Rule-based Semantic Interpretation

Idea: Locally rewrite syntactic structure to semantic representations.

a. Jane did not hop.

b. [PRED "hop<sUBI>'
SUBJ [PRED ’Jane’]

PRED "not!
ADJUNCT
ADJUNCT-TYPE neg

c. context_head(t,not:10)
context_head(ctxthop:17)hop:17)
in_context(t,role(mod(degree).ctx(hop: 1 7),not:10,normal))
in_context(ctx(hop: 17),role(Theme,hop:17,Jane:1))
word(Jane:1,Jane,noun,0,1,[[9482706]])
word(hop:17,hop,verb,0,17 ctx(hop: 17),[[1948772], [2076532], [1823521], [2076385],
[2076247], [2076113]])
word(not:10,not,adv,0,10,1,[[24548]])

11

Learning Transformation Rules: ?

» Learn string — tree transformation rules from (text, MR) pairs
» Components

12

Learning Transformation Rules: ?

» Learn string — tree transformation rules from (text, MR) pairs
» Components
» Text-meaning pairs (robocup and geoquery)

12

Learning Transformation Rules: ?

» Learn string — tree transformation rules from (text, MR) pairs
» Components

» Text-meaning pairs (robocup and geoquery)
» MR grammar (compositional model)

12

Learning Transformation Rules: ?

» Learn string — tree transformation rules from (text, MR) pairs
» Components

» Text-meaning pairs (robocup and geoquery)
» MR grammar (compositional model)
» SILT rule induction algorithm

12

Learning Transformation Rules: ?

» Learn string — tree transformation rules from (text, MR) pairs
» Components

Text-meaning pairs (robocup and geoquery)

MR grammar (compositional model)

SILT rule induction algorithm

Greedy matching procedure

vV vy VvVYyy

12

Datasets: Learning from MRs

» Robocup :

(If our p 4 has the ball, our p 4 should shoot, ((bowner our{4}) (do our{4} (shoot)))

RULE
MR Grammar
CONDITION DIRECTIVE RULE — CONDITION DIRECTIVE

CONDITION — bowner TEAM UNUM

bowner TEAM UNUM do TEAM UNUM ACTION DIRECTIVE — do TEAM UNUM ACTION

‘ ‘ ‘ ‘ TEAM — our
UNUM — 4
our 4 our 4 shoot ACTION . shoot

Bottom-up, String — Tree Rule Matching

RULE

CONDITION DIRECTIVE

bowner TEAM UNUM do TEAM UNUM ACTION

our 4 our 4 shoot

MR Grammar

RULE
CONDITION
DIRECTIVE
TEAM

UNUM
ACTION

LT

CONDITION DIRECTIVE
bowner TEAM UNUM

do TEAM UNUM ACTION
our

4

shoot

Transformation: [f our player 4 has the ball, our player 4 should shoot.

Input: If our player 4 has the ball, our player 4 should shoot.

14

Bottom-up, String — Tree Rule Matching

RULE
MR Grammar
CONDITION DIRECTIVE RULE
CONDITION
bowner TEAM UNUM do TEAM UNUM ACTION DIRECTIVE
‘ ‘ ‘ ‘ ‘ TEAM

UNUM
our 4 our 4 shoot ACTION

LT

CONDITION DIRECTIVE
bowner TEAM UNUM

do TEAM UNUM ACTION
our

4

shoot

Transformation: |f TEAM player 4 has the ball, TEAM player 4 should shoot.

Input: If our player 4 has the ball, our player 4 should shoot.

15

Bottom-up, String — Tree Rule Matching

RULE
MR Grammar
CONDITION DIRECTIVE RULE — CONDITION DIRECTIVE

CONDITION — bowner TEAM UNUM

bowner TEAM UNUM do TEAM UNUM ACTION DIRECTIVE — do TEAM UNUM ACTION

‘ ‘ ‘ ‘ ‘ TEAM — our
UNUM — 4
our 4 our 4 shoot ACTION . shoot

Transformation: |f TEAM UNUM has the ball, TEAM UNUM should shoot.
Input: If our player 4 has the ball, our player 4 should shoot.

16

Bottom-up, String — Tree Rule Matching

RULE
MR Grammar
INDITION DIRECTIVE
co 0 RECTIV RULE — CONDITION DIRECTIVE

CONDITION — bowner TEAM UNUM

bowner TEAM UNUM do TEAM UNUM ACTION DIRECTIVE — do TEAM UNUM ACTION

‘ ‘ ‘ ‘ ‘ TEAM — our
UNUM — 4
our 4 our 4 shoot ACTION . shoot

Transformation: |If TEAM UNUM has the ball, TEAM UNUM should ACTION.
Input: If our player 4 has the ball, our player 4 should shoot.

17

Bottom-up, String — Tree Rule Matching

RULE
MR Grammar
CONDITION DIRECTIVE RULE
CONDITION
bowner TEAM UNUM do TEAM UNUM ACTION DIRECTIVE
‘ ‘ ‘ ‘ ‘ TEAM

UNUM
our 4 our 4 shoot ACTION

LT

Transformation: |f COND=[TEAM UNUM has ball], TEAM UNUM should ACTION.

CONDITION DIRECTIVE
bowner TEAM UNUM

do TEAM UNUM ACTION
our

4

shoot

Input: If our player 4 has the ball, our player 4 should shoot.

18

Bottom-up, String — Tree Rule Matching

RULE
MR Grammar
CONDITION DIRECTIVE RULE — CONDITION DIRECTIVE
CONDITION — bowner TEAM UNUM
bowner TEAM UNUM do TEAM UNUM ACTION DIRECTIVE — do TEAM UNUM ACTION
‘ ‘ ‘ ‘ ‘ TEAM — our
4 4 h UNUM —_— 4
our our shoot ACTION —+ shoot
Transformation: |f CONDITION, TEAM UNUM should ACTION.
Input: If our player 4 has the ball, our player 4 should shoot.

19

Bottom-up, String — Tree Rule Matching

RULE
MR Grammar
CONDITION DIRECTIVE RULE
CONDITION
bowner TEAM UNUM do TEAM UNUM ACTION DIRECTIVE
‘ ‘ ‘ ‘ ‘ TEAM

UNUM
our 4 our 4 shoot ACTION

LT

CONDITION DIRECTIVE
bowner TEAM UNUM

do TEAM UNUM ACTION
our

4

shoot

Transformation: |f CONDITION, DIR=[TEAM UNUM should ACTION].
Input: If our player 4 has the ball, our player 4 should shoot.

20

Bottom-up, String — Tree Rule Matching

RULE
MR Grammar
CONDITION DIRECTIVE RULE — CONDITION DIRECTIVE
CONDITION — bowner TEAM UNUM
bowner TEAM UNUM do TEAM UNUM ACTION DIRECTIVE — do TEAM UNUM ACTION
‘ ‘ ‘ ‘ ‘ TEAM — our
4 . h UNUM — 4
our our shoot ACTION —+ shoot
Transformation: |f CONDITION, DIRECTIVE.
Input: If our player 4 has the ball, our player 4 should shoot.

21

Bottom-up, String — Tree Rule Matching

RULE
MR Grammar
CONDITION DIRECTIVE RULE — CONDITION DIRECTIVE
CONDITION — bowner TEAM UNUM
bowner TEAM UNUM do TEAM UNUM ACTION DIRECTIVE — do TEAM UNUM ACTION
‘ ‘ ‘ ‘ TEAM — our
4 4 h UNUM —_— 4
our our shoot ACTION —» shoot
Transformation: RULE=[|f CONDITION DIRECTIVE].
Input: If our player 4 has the ball, our player 4 should shoot.

22

Bottom-up, String — Tree Rule Matching

RULE
MR Grammar
CONDITION DIRECTIVE RULE — CONDITION DIRECTIVE
CONDITION —_— bowner TEAM UNUM
bowner TEAM UNUM do TEAM UNUM ACTION DIRECTIVE — do TEAM UNUM ACTION
TEAM —_— our
4 4 h UNUM —_— 4
our our shoot ACTION —+ shoot
Transformation: RULE
Input: If our player 4 has the ball, our player 4 should shoot.

23

SILT: Semantic Interpretation by Learning Transformations

» Extract mapping rules from strings to production rules.
» Bottom-up, find generalization between positive examples.

» Rank by goodness of fit over all examples.

24

SILT: General Algorithm

1: Function SiLT (T = {(x1,¥1), --; (Xn, ¥n)}, GMR)

2: Set 1 = T with parsed representations using Gur

3: Set Pp = productions with positive examples in T

3: Set N = productions with negative examples in T
4: SetL={}

5 While no more good rules do

6 R* = FINDBESTRULES(Gumr, Pn,Nn)

7 L=LUR*

8 apply rules in L to sentences in T

9 Return L

25

SILT: General Algorithm

1: Function SiLT (T = {(x1,¥1), --; (Xn, ¥n)}, GMR)

2: Set 1 = T with parsed representations using Gur

3: Set Pp = productions with positive examples in T

3: Set N = productions with negative examples in T
4: SetL={}

5 While no more good rules do

6 R* = FINDBESTRULES(Gumr, Pn,Nn)

7 L=LUR*

8 apply rules in L to sentences in T

9 Return L

T = {(xl = If our p 4 has the ball our p4 should shoot, Y2 = ((bowner our{4}) (do our{4} (shoot)))7

(xz = when p 4 has possession p4 must pass, Y2 = ((bowner our{4}) (do our{4} (pass))), }

25

SILT: General Algorithm

1: Function SiLT (T = {(x1,¥1), --; (Xn, ¥n)}, GMR)

2: Set 1 = T with parsed representations using Gur

3: Set Pp = productions with positive examples in T

3: Set N = productions with negative examples in T
4: SetL={}

5 While no more good rules do

6 R* = FINDBESTRULES(Gumr, Pn,Nn)

7 L=LUR*

8 apply rules in L to sentences in T

9 Return L

T = {(xl = If our p 4 has the ball our p4 should shoot, Y2 = ((bowner our{4}) (do our{4} (shoot)))7

X = when p 4 has possession p4 must pass, Y2 = ((bowner our{4}) (do our{4} (pass))), }

Prn[ACTION — shoot] = {x1,...}
NR[ACTION — shoot] = {x,...}
Prn[ACTION — pass] = {x,...}
Nn[ACTION — pass] = {xi,...}
PrnlUNUM — 4] = {x1,x,...}

25

SILT:

1:
2
3
4:
5
6
7
8

9:
10:
11:
12:

Find Best Rules

Function FINDBESTRULES (Gumg, Pn, Nn)
Set R={}
Foreach w € Gpr do
Set R, to be maximally-specific rules from Pp
Repeat for k = 1000
Choose ry, r» at random
g = GENERALIZE(r1, 12, T)
Add g to Rx
R=RUR;
r* = ARG MAX,cgr GOODNESS(r)
Remove positive examples covered by r* from Pp
Return r*

26

SILT: Find Best Rules

1: Function FINDBESTRULES (Gumrg, Pn, Nn)

2: SetR={}

3 Foreach w € Gpr do

4 Set R, to be maximally-specific rules from Pp
5: Repeat for k = 1000

6 Choose ry, r» at random

7 g = GENERALIZE(r1, 12, T)

8: Add g to Rx

9: R=RUR;

10: r* = ARG MAX,cr GOODNESS(r)

11: Remove positive examples covered by r* from Pp
12: Return r*

Example

line 3: 7 = UNUM — 4, Pn[UNUM — 4] = {x1, %2}

26

SILT: Find Best Rules

1: Function FINDBESTRULES (Gumrg, Pn, Nn)

2: SetR={}

3 Foreach w € Gpr do

4 Set R, to be maximally-specific rules from Pp
5: Repeat for k = 1000

6 Choose ry, r» at random

7 g = GENERALIZE(r1, 12, T)

8: Add g to Rx

9: R=RUR;

10: r* = ARG MAX,cr GOODNESS(r)

11: Remove positive examples covered by r* from Pp
12: Return r*

Example

line 3: 7 = UNUM — 4, Pn[UNUM — 4] = {x1, %2}
R = {x1 = UNUM — 4, x, = UNUM — 4, ...}

26

SILT: Find Best Rules

1: Function FINDBESTRULES (Gumrg, Pn, Nn)

2: SetR={}

3 Foreach w € Gpr do

4 Set R, to be maximally-specific rules from Pp
5: Repeat for k = 1000

6 Choose ry, r» at random

7 g = GENERALIZE(r1, 12, T)

8: Add g to Rx

9: R=RUR;

10: r* = ARG MAX,cr GOODNESS(r)

11: Remove positive examples covered by r* from Pp
12: Return r*

Example
line 3: 7 = UNUM — 4, Pn[UNUM — 4] = {x1, %2}
R = {x1 = UNUM — 4, x, = UNUM — 4, ...}
line 6: rn = (x1 = UNUM — 4),» = (x2 = UNUM — 4)

26

SILT: Find Best Rules

: Function FINDBESTRULES (Gumrg, Pn, Nn)
Set R={}
Foreach w € Gpr do
Set R, to be maximally-specific rules from Pp
Repeat for k = 1000
Choose ry, r» at random
g = GENERALIZE(r1, 12, T)
Add g to Rx
R=RUR;
10: r* = ARG MAX,cr GOODNESS(r)
11: Remove positive examples covered by r* from Pp
12: Return r*

CoNORWHOH

Example

line 3: 7 = UNUM — 4, Pn[UNUM — 4] = {x1, %2}

R = {x1 = UNUM — 4, x, = UNUM — 4, ...}
line 6: rn = (x1 = UNUM — 4),» = (x2 = UNUM — 4)
line 7: g = (x1Nx) = UNUM — 4

26

SILT: Find Best Rules

1: Function FINDBESTRULES (Gumrg, Pn, Nn)

2: SetR={}

3 Foreach w € Gpr do

4 Set R, to be maximally-specific rules from Pp
5: Repeat for k = 1000

6 Choose ry, r» at random

7 g = GENERALIZE(r1, 12, T)

8: Add g to Rx

9: R=RUR;

10: r* = ARG MAX,cr GOODNESS(r)

11: Remove positive examples covered by r* from Pp
12: Return r*

Example
line 3: 7 = UNUM — 4, Pn[UNUM — 4] = {x1, %2}
R = {x1 = UNUM — 4, x, = UNUM — 4, ...}
line 6: rn = (x1 = UNUM — 4),» = (x2 = UNUM — 4)
line 7: g = (x1Nx) = UNUM — 4

if our p 4 has the ball ... should shoot (| when our p 4 ... should pass =

26

SILT: Find Best Rules

1: Function FINDBESTRULES (Gumrg, Pn, Nn)

2: SetR={}

3 Foreach w € Gpr do

4 Set R, to be maximally-specific rules from Pp
5: Repeat for k = 1000

6 Choose ry, r» at random

7 g = GENERALIZE(r1, 12, T)

8: Add g to Rx

9: R=RUR;

10: r* = ARG MAX,cr GOODNESS(r)

11: Remove positive examples covered by r* from Pp
12: Return r*

Example
line 3: 7 = UNUM — 4, Pn[UNUM — 4] = {x1, %2}
R = {x1 = UNUM — 4, x, = UNUM — 4, ...}
line 6: rn = (x1 = UNUM — 4),» = (x2 = UNUM — 4)
line 7: g = (x1Nx) = UNUM — 4
if our p 4 has the ball ... should shoot (M when our p 4 ... should pass =
our p 4 = UNUM — 4

SILT:

1:
2
3
3
4:
5:
6
7
8
9

1:
2
3
4
5:
6.
7
8:
9:
10:

11:
12:

Full Algorithm

Function Sitt (T = {(x1, 1), ---, (Xn, ¥n) }, GMR)

Set [1 = T with parsed representations using Gyr
Set P = productions with positive examples in T
Set NVjj = productions with negative examples in T
Set L = {}
While no more good rules do
R* = FINDBESTRULES(Gumr, P, Nn)
L=LUR*
apply rules in L to sentences in T
Return L

Function FINDBESTRULES (Gumr, Pri,Nn)
Set R = {}
Foreach m € Gyr do
Set R, to be maximally-specific rules from Pp
Repeat for kK = 1000
Choose ry, r, at random
g = GENERALIZE(r1, 2,)
Add g to Ry
R=RUR;
r* = ARG MAX,cgr GOODNESS(r)
Remove positive examples covered by r* from Pp

Return r*

27

Experiment results

» Main metric: Does my parser generate the gold
representations?
» Cross-validation: Test on multiple test sets (variation of the
standard train-test setup)
» Motivation (in this case): Small datasets. A single test set
might not be a good representative sample.

28

Experiment results

» Main metric: Does my parser generate the gold
representations?

» Cross-validation: Test on multiple test sets (variation of the
standard train-test setup)

» Motivation (in this case): Small datasets. A single test set
might not be a good representative sample.

» Recall: How many inputs received a full analysis/parse?

Precision: out of those, how many were correct?

28

Results

Pregision (%)

Reeall (1)

g

g8 38 8

SILT-gtring ——

CHILLIN .
COCKTAIL @
) 50 100 150 200 250 300
Treining sentences
Figure 7: Precision learning curves for CLANG
&
50
ah
a
e SILT-string —+—
SiLTre e
CHILLIN -~
a COCKTAIL &
10
I —
o
0) 100 150 200 250 300

Training sentences

Figure 8: Recall learning curves for CLANG

29

Why does this work?

» goodness: potential rules compete in terms of their global coverage or
goodness (bottom-up, or simple to complex)

pos(r)?

G oS = ——
OODNESS(r) pos(r) + nea(r)

> greedy: good rules are applied greedily, MR grammar is deterministic.

30

Why does this work?

» goodness: potential rules compete in terms of their global coverage or
goodness (bottom-up, or simple to complex)

pos(r)?

G D = ——
OODNESS(r) pos(r) + neg(r)

> greedy: good rules are applied greedily, MR grammar is deterministic.

» There is no turning back. Errors propagate.
» No way to handle or preserve ambiguity.

30

A non-greedy semantic parser?

Idea: The best local option might not (in general) be the best choice. Try
to consider all possibilities.

'at the REGION' = CONDITION — ((bpos REGION))
'at the REGION' = CONDITION — ((ppos REGION))

If the player is [at the REGION], the goalie should guard the goal.

31

A non-greedy semantic parser?

Idea: The best local option might not (in general) be the best choice. Try
to consider all possibilities.

'at the REGION' = CONDITION — ((bpos REGION))
'at the REGION' = CONDITION — ((ppos REGION))

If the player is [at the REGION], the goalie should guard the goal.

32

A non-greedy semantic parser?

Idea: The best local option might not (in general) be the best choice. Try

to consider all possibilities.

"at the REGION' = CONDITION — ((bpos REGION))
'at the REGION' = CONDITION — ((ppos REGION))
'player at the REGION' = CONDITION — ((ppos REGION))

If the [player is at the REGION], the goalie should guard the goal.

33

Considering all possibilities?

» Ambiguities can grow exponentially with length

—_

=1
b L]
80
g
B
(5]
k]
—Heg
g
e
o
.
N
__- _-_-_-_-_-—-_-_-
[=] o (=} o (=1 i
(=3 o (=3 (=1 —
(=3 [=3 (=1 —
o (=1 i
=] —
— sosred jo aqumpN
n— x
C
n— x
~~ 2]
X AS| x
n— x
nbr SA
wn SA n— x
wn n—x
(%2} n— x
— 9]
AS| x
I
9 n— x

n— x
SA n— x
s
2 e
n— x h— x
SASASASI 5
n— x
S|
2
o o
2o
AS| x
€n n— x
ol "o
n— x

34

CKY Parsing Algorithm

» Polynomial-time, bottom-up parsing algorithm for CFGs, uses
dynamic programming.

» dynamic programming: breaks problems into smaller
sub-problems, local solutions are shared.

» The basis of virtually all decoding methods we will cover in
this class (from MT, parsing, .., very important!).

35

Brief review: Context-Free Grammars

» context-free grammar (CFG):

Gg=(X,N,5R)

. set of terminal symbols.
. set of non-terminal symbols.
csetof rules = {N - a|ae (NUX)*}

. start symbol

wxM=

vV vyvyy

» Chomsky Normal-Form (CNF): rules in R take the form:

» A— B C,where B,Ce N
» A— a, whereac ¥

36

CKY: Chart Filling

RULE —> CONDITION DIRECTIVE
CONDITION — bpos REGION | ppos REGION
DIRECTIVE — PLAYER ACTION

UNUM — 4

ACTION — shoot | pass

ppos — PLAYER

Transformation rules

PLAYER — 'p4’ | 'then’ | 'pass’ | 'shoots’
REGION — ’at the goal’ | 'when’

shoot —> 'p4’ | 'shoots’ | if

pass —> ’pass’ | 'then should’

A — if’ | 'is’ | "then’ | 'when’

1 2 3

when p4 is-at-the-goal p4 shoots.

BAIWINFO

37

CKY: Chart Filling

RULE —> CONDITION DIRECTIVE
CONDITION — bpos REGION | ppos REGION
DIRECTIVE — PLAYER ACTION

UNUM — 4

ACTION — shoot | pass

ppos — PLAYER

Transformation rules

PLAYER — 'p4’ | 'then’ | 'pass’ | 'shoots’
REGION — ’at the goal’ | 'when’

shoot —> 'p4’ | 'shoots’ | if

pass —> ’pass’ | 'then should’

A — if’ | 'is’ | "then’ | 'when’

1 2 3

owhen; p4 is-at-the-goal p4 shoots.

Bl WINRRO

38

CKY: Chart Filling

RULE —> CONDITION DIRECTIVE

CONDITION — bpos REGION | ppos REGION

DIRECTIVE — PLAYER ACTION

UNUM — 4

ACTION — shoot | pass

ppos — PLAYER

Transformation rules

PLAYER — 'p4’ | 'then’ | 'pass’

REGION — ’at the goal’ | 'when’

shoot —> 'p4’ | 'shoots’ | if

pass —> ’pass’ | 'then should’

A — if’ | 'is’ | "then’ | 'when’
1 2 3
A\REG.

when 1p4; is-at-the-goal p4 shoots.

AlWINHO

39

CKY: Chart Filling

RULE —> CONDITION DIRECTIVE
CONDITION — bpos REGION | ppos REGION
DIRECTIVE — PLAYER ACTION

UNUM — 4

ACTION — shoot | pass

ppos — PLAYER

Transformation rules

PLAYER — 'p4’ | 'then’ | 'pass’ | 'shoots’
REGION — ’at the goal’ | 'when’

shoot —> 'p4’ | 'shoots’ | if

pass —> ’pass’ | 'then should’

A — if’ | 'is’ | "then’ | 'when’

1 2 3

A REG.

sh.,PL.

when p4 jis-at-the-goal; p4 shoots.

AlWINRRO

40

CKY: Chart Filling

RULE —> CONDITION DIRECTIVE
CONDITION — bpos REGION | ppos REGION
DIRECTIVE — PLAYER ACTION

UNUM — 4

ACTION — shoot | pass

ppos — PLAYER

Transformation rules

PLAYER — 'p4’ | 'then’ | 'pass’ | 'shoots’
REGION — ’at the goal’ | 'when’

shoot —> 'p4’ | 'shoots’ | if

pass —> ’pass’ | 'then should’

A — if’ | 'is' | "then’ | 'when’

when p4 is-at-the-goal p4 shoots.

41

CKY: Chart Filling

RULE
CONDITION
DIRECTIVE
UNUM
ACTION

ppos

Transformation rules
PLAYER

REGION

shoot

pass

A

owhen p4 is-at-the-goal; p4 shoots.

LEEEL]

LEELl

CONDITION DIRECTIVE

bpos REGION | PLAYER REGION
PLAYER ACTION

4

shoot | pass

PLAYER

'p4’ | 'then’ | 'pass’ | 'shoots’
‘at the goal’ | 'when’

'p4’ | 'shoots’ | if
'pass’ | 'then should’

'if" | is’ | 'then’ | 'when’

2

sh.,PL.

RIWIN RO

sh.,PL.

42

CKY: Chart Filling

RULE
CONDITION
DIRECTIVE
UNUM
ACTION

ppos

Transformation rules
PLAYER

REGION

shoot

pass

A

when p4 is-at-the-goal 3p4 shootss.

LEEEL]

LEELl

CONDITION DIRECTIVE

bpos REGION | PLAYER REGION
PLAYER ACTION

4

shoot | pass

PLAYER

'p4’ | 'then’ | 'pass’ | 'shoots’
‘at the goal’ | 'when’

'p4’ | 'shoots’ | if
'pass’ | 'then should’

'if" | is’ | 'then’ | 'when’

1 2 3 4 5

AREG.

COND.

sh.,PL.

Al wWN RO
]
(2]

43

CKY: Full Algorithm

1: Function CKY (G, x = a1, a2, ..., an)

2: SetT =0

3: forallj from 1 up n do

4 for all rules A — a; in Gr do

5: add [[—1,A,j]to T

6: for all / from j — 2 down to 0 do

7 for all kK from i+ 1 up toj — 1 do

8: for all rules A — B C in Gr do

9: if rules [/, B, k] and [k, C,j] are in T then

10: add [i,A,j]to T
11: if [0,Gs,n]isin T then
12: return true

> lines 3-10: chart filling routine.
> lines 11-12: recognition (is this a string in my language?)

> key: every smaller span is explored before each larger span.

44

Non-greedy parsing

» goodness: Is this rule used in valid derivations?
» Example: 'when' = REGION

1 2 3 4 5
0| xrec. COND. RULE
. 1 sh.,PL.
when p4 is-at-the-goal p4 shoots.
2 REG.
3 sh.,PL.| DIR.
4 sh.,PL.

Non-greedy parsing

» goodness: Is this rule used in a valid derivation?

» probabilistic:

quantify this in terms of probabilities

46

Plan for lecture

> Introduce probabilistic grammars as an alternative tool to
solve these problems.

» Setting: rather than extract rules in a greedy fashion, we
extract many rules then learn the good rules.

47

Probabilistic Context-Free Grammars

» probabilistic context-free grammar (PCFG):

vV vy vy VvVYy

g9 = (27 N,S, R,Q)

N : set of terminal symbols.

Y : set of non-terminal symbols.

R :setof rules={N —a|ac (NUX)"}
S : start symbol

0: parameters : Op, o, — [0,1) such that

VRN Z 0[\/ —a=1.0
(N—=a)eRy

(prob. distribution over lhs rules)

48

PCFG Basics

PP
VP

NP
NP
NP
NP
NP
NP

O]

NP VP (1.0)
P NP (1.0)

v NP (0.7) | VP PP (0.3)

with (1.0)
saw (1.0)
NP PP (0.4)

astronomers (0.1)

ears (0.18)

saw (0.04)
stars (0.18))
telescopes (0.1)

> probability of a derivation:

po(d) =

NP1

astronomers

d

NPo.1

astronomers

do

H 9N~>D¢

(N—a)in d

VPo7

Vio NP4

saw NPgig PP1g

stas Pro NPoss

with ears

VPy7
VP1o PPyo
Vio NPois Puo NPoas

saw stars with ears

49

PCFG Basics

S1o
/\
NPo.1 VPo7
/\
astronomers V4 NPy 4
S;Jw NPy .1 PP1o
stars Pio NPois
d wi‘th ears dy

> probability of a derivation:

po(d) =

S1o
NPy 1 VPo.7
astronomers VP o PP1o

saw stars with ears

H 0N~>o¢

(N—a)ind

> pp(d1) =1.0%0.1%0.7+1.0%0.4+0.18 1.0 1.0 * 0.18 = 0.0009072
> pp(d2) =1.0%0.1%0.3%0.7+1.0%0.18% 1.0+ 1.0+ 0.18 = 0.0015876

50

PCFG Basics

S1o
/\
NPy 1 VPy.7 S1o
/\ /\
astronomers Vg NPy 4 NPy 1 VPy7
sa‘w NP(\PPLO astron‘omers VPio PPy o
stars Pro NPoig Vio NPois Pro NPois
d wi‘th ea‘rs dp sa‘w stlrs wi‘th ea‘rs

> probability of a derivation:

po(d) = H On—a

(N—a)ind

> pp(d1) =1.0%0.1%0.7+1.0%0.4+0.18 1.0 1.0 * 0.18 = 0.0009072
> pp(d2) =1.0%0.1%0.3%0.7+1.0%0.18% 1.0+ 1.0+ 0.18 = 0.0015876

> probability of a sentence: x

pgs (X = W17 W27 (A W"’) = Zp@(d)
d

50

Efficient computation of probabilities

> Probability of a sentence:

pge (X = Wi, W2, ..., W") = Zpe(d)
d

51

Efficient computation of probabilities

> Probability of a sentence:

PGy (X = Wiy, W2, ..., W") = Zpe(d)
d

» requires find all parse derivations d (same problem as before)

51

Efficient computation of probabilities

> Probability of a sentence:

pge (X = Wi, W2, ..., W") = Zpe(d)
d

» requires find all parse derivations d (same problem as before)
» We can use dynamic programming again to solve this.

51

Inside Probabilities

>M

Wi-1

Wj+1

— b=

|/ WJ

> definition: S ;(N) = P(w;,...,w; | N, Go)

52

Inside Probabilities

>M

Wi—1 Wjt1

— b=

|/ WJ

> definition: G;;j(N) = P(wj,...,w; | N,Gg)
» computed recursively and bottom-up:

» Base:
ﬁi,i+1(N) = QNHWI',,'H

52

Inside Probabilities

>M

Wi—1 Wjt1

— b=

|/ WJ

> definition: G;;j(N) = P(wj,...,w; | N,Gg)
» computed recursively and bottom-up:

» Base:
ﬁi,i+1(N) = QNHWI',,'H

» Else:

Bii(N) =" > On-ec Bin(B) e (C)

B,C i<=k<=j

52

Inside Probabilities: Example

S — NP VP (1.0)

PP — PP (1.0) fragment: ewith7 earsg
VP — VNP (0.7) | VP PP (0.3)
P — with (1.0) Be,7(P) = 1.0

\ — saw (1.0) —

NP — NP PP (0.4) Prs(NP) =018

NP — astronomers (0.1) B6,8(PP) =1.0%1.0%0.18
NP — ears (0.18)

NP — saw (0.04) .

NP — stars (0.18)) Bon(S) = ...

NP — telescopes (0.1)

> definition: G;;j(N) = P(wi,...,w; | N, Gg)
» computed recursively and bottom-up:
> Base:
Biiv1(N) = QNHWI',,'H
> Else:

Bij(N) = Z Z On—sc Bik(B) Bit1,i(C)

B,C i<=k<=j

Outside Probabilities

» definition: Oé,',j(N) = :D(W()7 oy Wist, N,',j7 Wjt1,

ey Wa | Go)

54

Outside Probabilities

» definition: Oé,',j(N) = :D(Wo7 oy Wist, N,',j7 Wjt1,
» computed recursively and top-down:

> Base:
0[0),,(5) =1

ey Wa | Go)

54

Outside Probabilities

> definition: «;;(N) =

S
wi_1 N Wjt1
P(W07 oy Wi, Nl',j7 Wjt+1, ..., Wp I gG)

» computed recursively and top-down:

> Base:
> Else:
aii(N) =3
B,COo0<=k<i

0[0),,(5) =1

> 0soc n Bri—1(C) arji(B)+D . D 0sc nBjr1,k(C)evik(B)

B,Cn>=k>i

54

Computing Probabilities: take-aways

» lIdea: inside and outside probabilities allows us to efficiently compute
probabilities (e.g. probability of a sentence)

> Can be integrated within a chart-filling procedure (e.g. the CKY
algorithm).

> For a given sentence, we compute the probability of a rule N spanning

from i to j:
P(wo, ..., wn, Nij | Go) = ai j(N)Bi;(N)

55

Parameter Estimation and Learning

> Objective (english): We want the find parameters 6 that maximize the
probability of our training dataset D (= x1,...,Xn).

56

Parameter Estimation and Learning

> Objective (english): We want the find parameters 6 that maximize the
probability of our training dataset D (= x1,...,Xn).

n
argmaxge H pge(xl.)

56

Back to Semantic Parsing

RULE —> CONDITION DIRECTIVE
CONDITION — bpos REGION | ppos REGION
DIRECTIVE — PLAYER ACTION

UNUM — 4

ACTION — shoot | pass

ppos — PLAYER

Transformation rules

PLAYER — 'p4’ | 'then’ | 'pass’ | 'shoots’
REGION — ’at the goal’ | 'when’

shoot —> 'p4’ | 'shoots’ | if

pass —> ’pass’ | 'then should’

A — if’ | 'is’ | "then’ | 'when’

> We have a dataset of text and outputs.

> We have mapping rules that over-generate, want to find a grammar the

tells us something about the goodness of rule.

Parameter Estimation and Learning

> Objective (english): We want the find parameters 6 that maximize the
probability of our training dataset D (= x1,...,Xn).

argmaxgg H pge(xl.)

» Maximum Likelihood Estimation (MLE) (with full information)

P _ count(N — a)
Nze ™ > count(N — o)

58

Parameter Estimation and Learning

> Objective (english): We want the find parameters 6 that maximize the
probability of our training dataset D (= x1,...,Xn).

argmaxge H pge(xl.)

» Maximum Likelihood Estimation (MLE) (with full information)

P _ count(N — a)
Nze ™ > count(N — o)

» problem: we often don't have full information

58

Back to Semantic Parsing

RULE —> CONDITION DIRECTIVE
CONDITION — bpos REGION | ppos REGION
DIRECTIVE — PLAYER ACTION

UNUM — 4

ACTION — shoot | pass

ppos — PLAYER

Transformation rules

PLAYER — 'p4’ | 'then’ | 'pass’ | 'shoots’
REGION — ’at the goal’ | 'when’

shoot —> 'p4’ | 'shoots’ | if

pass —> ’pass’ | 'then should’

A — if’ | 'is’ | "then’ | 'when’

> We have a dataset of text and outputs.

> We have mapping rules that over generate, want to find a grammar the

tells us something about the goodness of rule.

» We don't have the actually target derivations for each x.

Expectation-Maximization (EM)

> lterative technique for doing MLE in cases involving hidden (or latent)
variables and incomplete data.

> Makes an initial (possibly random) guess about parameters, then
iteratively repeats two steps:

» e-step: Estimates counts using current model parameters.
» m-step: Re-estimate parameters based on these completions.

60

Expectation-Maximization (EM)

> lterative technique for doing MLE in cases involving hidden (or latent)
variables and incomplete data.

> Makes an initial (possibly random) guess about parameters, then
iteratively repeats two steps:

» e-step: Estimates counts using current model parameters.
» m-step: Re-estimate parameters based on these completions.

> converge: Will eventually converge (not proved here).

60

Expectation-Maximization (EM)

> lterative technique for doing MLE in cases involving hidden (or latent)
variables and incomplete data.

> Makes an initial (possibly random) guess about parameters, then
iteratively repeats two steps:

» e-step: Estimates counts using current model parameters.
» m-step: Re-estimate parameters based on these completions.

> converge: Will eventually converge (not proved here).

> inside-outside algorithm: counts are based on inside-outside

probabilities.

60

Inside-Outside Algorithm (rough outline)

1: Function INSIDE-OUTSIDE(Gs, D = X1, .., Xp)
2 Until converge do
2 SetC =10
3 for all sentences i from 1 up n do
4. compute inside probabilities
5: compute outside probabilities
6: for all rules of the form N — B C do
7 CI[N—= BC]+= f,“g’”(if ZO</<J<k<na’ k(N)Bik(B)Bj+1.4(C)
8 for all rules of the form N — w C do
9 CIN = w] += 2= 5, 0o 2a0<n Biix1(N)
10: for all rules N — § from 1 upndo
11: 9N—>§ = M
S5/ C(N—57)
12: return Gy

> e-step: lines 3-9, m-step: lines 10-11.

61

Big ldeas:

» Greedy versus non-greedy parsing and extraction of rules

» Learning: two different notions of goodness

» Introduced the basics of (P)CFGs, and one particular
parameter estimation method.

62

Big ldeas:

» Greedy versus non-greedy parsing and extraction of rules

» Learning: two different notions of goodness

» Introduced the basics of (P)CFGs, and one particular
parameter estimation method.

» project idea: re-implement Kate's model as a PCFG learner.
» presentation papers: 7?77

62

Roadmap

> Lecture 2 (today): rule extraction, decoding (parsing

perspective)
» Lecture 3:

» Lecture 4:

rule extraction, decoding (MT perspective)
structured classification and prediction.

63

References |

Bérschinger, B., Jones, B. K., and Johnson, M. (2011). Reducing grounded learning
tasks to grammatical inference. In Proceedings of EMNLP-2011, pages 1416-1425.

Crouch, D. and King, T. H. (2006). Semantics via f-structure rewriting. In
Proceedings of the LFG06 Conference, pages 145-165.
http://www2.parc.com/isl/groups/nltt/papers/Ifg06crouchking-PREPRINT . pdf.

Kate, R. J., Wong, Y. W., and Mooney, R. J. (2005). Learning to transform natural
to formal languages. In Proceedings of the National Conference on Artificial
Intelligence, volume 20, page 1062.
http://www.aaai.org/Library/AAAl/2005/aaai05-168.php.

Kim, J. and Mooney, R. J. (2012). Unsupervised pcfg induction for grounded
language learning with highly ambiguous supervision. In Proceedings of
EMNLP-CoNLL-2012, Jeju Island, Korea.

Meyers, A., Kosaka, M., and Grishman, R. (2000). Chart-based transfer rule
application in machine translation. In Proceedings of the 18th conference on
Computational linguistics-Volume 1, pages 537-543. Association for Computational
Linguistics.

Woods, W. A. (1973). Progress in natural language understanding: an application to
lunar geology. In Proceedings of the June 4-8, 1973, National Computer
Conference and Exposition, pages 441-450.

64

