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Weakly-Supervised Semantic Processing

I Semantic Processing: Formal and computational modeling
of natural language meaning.

I Weakly Supervised: Machine learning methods and
problems that involve partially annotated data.
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Formal Modeling of Natural Language Meaning

“I reject the contention that an important theoretical difference
exists between formal and natural languages.” Montague (1970)

I object-language A student in the room is also an instructor.

I meta-language ∃x . Students(x) ∧ Instructors(x)
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Formal Modeling of Natural Language Meaning

Allows us to rigorously define the truth conditions of statements.

I object-language Student instructors of this class.

I meta-language λx . Instructors(x) ∧ Students(x)

(λx . Instructors(x) ∧ Students(x))(Kyle) → True
(λx . Instructors(x) ∧ Students(x))(Prof. Kuhn) → False
(λx . Instructors(x) ∧ Students(x))(Anna) → False
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Lambda Functions and Programming (Lisp)

(setf Students ’(kyle mary anna john)) ;; Students

(setf Instructors ’(kyle))) ;; Instructors

((lambda (x)

(and

(member x Students)

(member x Instructors)))

’kyle)

;; => True
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Lambda Functions and Programming (Python)

Students = set(["Kyle","Mary","Anna","John"])

Instructors = set(["Kyle"])

Student Instructors = lambda x :

(x in Students) and (x in Instructors)

Student Instructors("Kyle")

## => True

Student Instructors("Mary")

## => False

8



Logic and Inference

Logic can be used for drawing new conclusions or reasoning with
background knowledge.

I object-language All instructors in the room are students.

I meta-language ∀x . Instructor(x) → Students(x)

⇒ All tall instructors in the room are students.
⇒ No instructors here are professors.
⇒ Our instructor is a student.
¬ Our instructor is a professor.
¬ Our instructor is a famous professor.
? Our instructor is a brilliant student.

9



Automated Reasoning: Cyc
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Computational Modeling: The full picture

I Standard processing pipeline

input sem

List samples that contain
every major element

world

JsemK ={S10019,S10059,...}

Semantic Parsing

Reasoning

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /

SAMPLE : (CONTAINS Y X);

(PRINTOUT Y)))

Knowledge Representation

Lunar QA system (Woods (1973))
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Semantic Parsing: Generating formal representations

I Data-driven: Given data, learn a function that can map any
given input (x) to a meaning representation (z).

I What kind of data do we learn from?

input x What state has the largest population?

sem z (argmax (λx . (state x) (population x)))

world JzK California

y

Geoquery Corpus (Zelle and Mooney (1996))
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Semantic Parsing: Generating formal representations

I Data-driven: Given data, learn a function that can map any
given input (x) to a meaning representation (z).

I What kind of data do we learn from?

Supervision: Dataset Dinput x What state has the largest population?

sem z (argmax (λx . (state x) (population x)))

Logical Forms: D = {(xi , zi )}Ni=1
Task: learn (latent) y, translation

Zettlemoyer and Collins (2009)

Kwiatkowski et al. (2010)

world JzK California

Denotations: D = {(xj , Jzj K)}Ni=1
Task: learn z,y, program synthesis

Liang et al. (2013)

Berant et al. (2013)

y

Geoquery Corpus (Zelle and Mooney (1996))
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Learning with Weak Supervision

I Weak-Supervision: Not all linguistic structure is annotated,
learning is autonomous, learning cues are underspecified.

I Techniques: Statistical Machine Translation, Parsing,
Structured Classification, Program Induction.
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Applications
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Applications: Facebook graph search
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Applications: Smart Homes (KITT.ai)
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Applications: Open-domain Question-Answering (KITT.ai)
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Organizational Matters
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Goals

What this course is not:

I Not a semantics course.

I Not a pure machine learning or mathematics course.

I Not a programming course.

But:

I Will involve knowledge of linguistic semantics.

I Assumes machine learning and math knowledge.

I Requires basic programming and algorithmic knowledge.

I An ability to tie together all these different components.
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Formal Requirements

I Weakly required and supplementary readings.

I Writing summaries for a subset of required readings.

I Give a presentation on a research paper.

I An in-depth term paper about a specific topic.
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