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Lecture Plan

I Overview: Review of class topics and outstanding issues.

I General topics: Knowledge Representation, Learning from Entailment

2



The Big Picture (reminder)

I Standard processing pipeline

input sem

List samples that contain
every major element

world

JsemK ={S10019,S10059,...}

Semantic Parsing

Reasoning

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /

SAMPLE : (CONTAINS Y X);

(PRINTOUT Y)))

Knowledge Representation

Lunar QA system (Woods (1973))
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Data-driven Semantic Parsing

I Goal: Given data, learn a function that can map any given input (x) to a

meaning representation (z).

I What kind of data do we learn from?

Supervision: Dataset Dinput x What state has the largest population?

sem z (argmax (�x . (state x) �x . (population x)))

Logical Forms: D = {(x
i

, z
i

)}N
i=1

Task: learn (latent) y, translation

Zettlemoyer and Collins (2009)

Kwiatkowski et al. (2010)

world JzK California

Denotations: D = {(x
j

, Jz
j

K)}N
i=1

Task: learn z,y, program synthesis

Liang et al. (2013)

Berant et al. (2013)

y

Geoquery Corpus (Zelle and Mooney (1996))
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Question Today

I How do these di↵erent subproblems interact?

input sem

List samples that contain
every major element

world

JsemK ={S10019,S10059,...}

Semantic Parsing

Reasoning

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /

SAMPLE : (CONTAINS Y X);

(PRINTOUT Y)))

Knowledge Representation

Lunar QA system (Woods (1973))
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Learning from Logical Forms: CCG Example

I Data: (Oklahoma borders Texas, borders’(oklahoma’,texas’))

I Latent Variable: CCG derivations, Probability distribution over

derivations.

Oklahoma

NP : oklahoma’

borders

(S\NP)/NP : �y ,�x .borders(x , y)

Texas

NP : texas’

(>)

S\NP : �x .borders(x , texas0)

(<)

S : borders(oklahoma’,texas’) X
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Learning from Logical Forms: CCG Example

I Data: (Oklahoma borders Texas, borders’(oklahoma’,texas’))

I Latent Variable: CCG derivations, Probability distribution over

derivations.

Oklahoma

NP : ohio’

borders

(S\NP)/NP : �y ,�x .borders(x , y)

Texas

NP : texas’

(>)

S\NP : �x .borders(x , texas0)

(<)

S : borders(ohio’,texas’) ⇥
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Learning from Logical Forms: CCG Example

I Data: (Oklahoma borders Texas, borders’(oklahoma’,texas’))

I Latent Variable: CCG derivations, Probability distribution over

derivations.

Oklahoma

NP : oklahoma’

borders

NP : texas’

Texas

(S\NP)/NP : �y ,�x .borders(x , y)
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S\NP : �x .borders(x , texas0)

(<)
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Learning from Logical Forms: Compositional Model

Oklahoma

NP : oklahoma’

borders

(S\NP)/NP : �y ,�x .borders(x , y)

Texas

NP : texas’

(>)

S\NP : �x .borders(x , texas0)

(<)

S : borders(oklahoma’,texas’) X

Prelude > let borders ::([Char],[Char]) -> Bool;

Prelude | borders a = (elem a [("oklahoma","texas"), ...])

Prelude > borders ("nh","texas")

=> False
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Learning from Logical Forms: Compositional Model

Oklahoma

NP : oklahoma’

borders

(S\NP)/NP : �y ,�x .borders(x , y)

Texas

NP : texas’

(>)

S\NP : �x .borders(x , texas0)

(<)

S : borders(oklahoma’,texas’) X

Prelude > :type borders

=> borders :: ([Char], [Char]) -> Bool

Prelude > let borders c = curry borders

Prelude > :type borders c

=> borders c :: [Char] -> [Char] -> Bool

semantic type: e �! e �! t
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Learning from Logical Forms: Compositional Model
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NP : oklahoma’

borders

(S\NP)/NP : �y ,�x .borders(x , y)

Texas

NP : texas’

(>)

S\NP : �x .borders(x , texas0)

(<)

S : borders(oklahoma’,texas’) X

Prelude > :type borders

=> borders :: ([Char], [Char]) -> Bool

Prelude > let borders c = curry borders

Prelude > :type borders c

=> borders c :: [Char] -> [Char] -> Bool

semantic type: e �! e �! t
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Lexical rule templates (Triggers)

I Templates: Extracting CCG entries from example logical forms, does not

work without target logical forms.

I Having logical forms keeps the space of rules/programs feasible.
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work without target logical forms.

I Having logical forms keeps the space of rules/programs feasible.
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#
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Assumptions for CCG approach

I Logical Form: for each input, e.g.,

�x .state(x) ^ borders(x , texas)

I Implementation: Programs that implement domain model.

I Seed Lexicon: Initial set of CCG lexical entries.

Texas := NP : texas

border := (S\NP)/NP : �y�x .borders(x , y)
states := S\N : �x .state(x)
which := (S/(S\NP))/N : �f ,�g ,�x .f (x) ^ g(x)
Texas := (S/(S\NP))/N : �f ,�g ,�x .f (x) ^ g(x)
border := S\N : �x .state(x)
...
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Learning from Logical Forms: General Properties

I Goal: Learn to translate to logical forms using example sentences with

target logical representations.

I Critical: Having example logical forms limits the space of mappings and

translation rules.

I The types of models often used are indi↵erent to the types of

representations used.
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Learning from Denotations

I Alternative approach to learning, only needs example input/output
(requires a background database of facts).

I Logical forms: (two times two plus three, (plus (mult 2 2) 3))
I Denotations: (two times two plus three, 7)

I Di↵erence: In the second case, the logical representation is a latent

variables (not only the translation), no program implementation.

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mul

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two
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Learning from Denotations

I Alternative approach to learning, only needs example input/output
(requires a background database of facts).

I Logical forms: (two times two plus three, (plus (mult 2 2) 3))
I Denotations: (two times two plus three, 7)

I Why: Avoids annotation (practical/methodological), can we learn

programs from input/output? (scientific)

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mul

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two
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Learning from Denotations (Liang et al. (2011))

I Computational Problem: Requires exploring an exponential space of

possible representations and programs:1

Input: What is the most populous city in California?

#
�x .city(x)

#
Answer: Los Angeles

1
Examples throughout adapted from Percy Liang’s slides

17



Learning from Denotations (Liang et al. (2011))

I Computational Problem: Requires exploring an exponential space of

possible representations and programs:

Input: What is the most populous city in California?

#
�x .city(x) ^ loc(x ,CA)

#
Answer: Los Angeles
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Learning from Denotations (Liang et al. (2011))

I Computational Problem: Requires exploring an exponential space of

possible representations and programs:

Input: What is the most populous city in California?

#
�x .state(x) ^ border(x ,CA)

#
Answer: Los Angeles
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Learning from Denotations (Liang et al. (2011))

I Computational Problem: Requires exploring an exponential space of

possible representations and programs:

Input: What is the most populous city in California?

#
argmax(�x .city(x) ^ loc(x ,CA),�x .population(x)))

#
Answer: Los Angeles
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Learning from Denotations (Liang et al. (2011))

I Computational Problem: Requires exploring an exponential space of

possible representations and programs:

Input: What is the most populous city in California?

#
... LF, LF, LF, LF, LF LF LF LF LF LF, LF, LF, LF, LF, LF, LF ...

#
Answer: Los Angeles
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Why exponential?

I Geoquery: Answering questions about American geography.

I World: or domain of discourse is a database consisting of predicates.

Input: A city located in California.

#
?

#
Answer: San Francisco

city

San Francisco

Chicago

New York

....

loc

Manhattan New York

San Francisco California

Chicago Illinois

... ...
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Why exponential?

I Geoquery: Answering questions about American geography.

I World: or domain of discourse is a database consisting of predicates.

Input: A city located in California.

#
�x .city(x)

#
Answer: San Francisco

city

San Francisco

Chicago

New York
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Manhattan New York

San Francisco California
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Why exponential?

I Geoquery: Answering questions about American geography.

I Simple case: only unary predicates. What is the search space?

Input: A city located in California.

#
�x .city(x)

#
Answer: San Francisco

city

San Francisco

Chicago

New York

....

loc

Manhattan New York

San Francisco California

Chicago Illinois

... ...
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Why exponential?

I Geoquery: Answering questions about American geography.

I Disjunction: In this case, imposes constraint on equality.

Input: A city located in California.

#
�x .city(x) ^ loc(x,California)

#
Answer: San Francisco

city

San Francisco

Chicago

New York

....

loc

Manhattan New York

San Francisco California

Chicago Illinois

... ...
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Why exponential?

I Geoquery: Answering questions about American geography.

I Next stage: Unary+Binary. What is the search space?.

Input: A city located in California.

#
�x .city(x) ^ loc(x,California)

#
Answer: San Francisco

city

San Francisco

Chicago

New York

....

loc

Manhattan New York

San Francisco California

Chicago Illinois

... ...
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Why exponential?

I Geoquery: Answering questions about American geography.

I Unrestrained: What is the search space?.

Input: A city located in California.

#
�x .city(x) ^ loc(x,California) ^ P1(x,Y) ^ P2(x,Y) ^ .... ^ ...

#
Answer: San Francisco

city

San Francisco

Chicago

New York

....

loc

Manhattan New York

San Francisco California

Chicago Illinois

... ...
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Learning from Denotations and Knowledge Representation

I The search space for unrestricted lambda calculus logical forms is too
large to search.

I Consider set of predicates P ={loc,city, borders, ...} of size
n, the set of disjunctions is 2n (equal to the powerset of P)

250 = 1, 125, 899, 906, 842, 624

I We cannot rely on example logical forms to constrain the space.

I Solution (Liang et al. (2011)): Develop a constrained version of lambda

calculus, simplifies representations, tree structured
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DCS Language (Liang et al. (2011))
I Tree structured, nodes are predicates and edges are relations.
I Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation Constraints World

city

loc

CA

1
1

2
1

city

San Francisco

Chicago

New York

....

loc

Manhattan New York

San Francisco California

Chicago Illinois

... ...

CA

California

29



DCS Language (Liang et al. (2011))
I Tree structured, nodes are predicates and edges are relations.
I Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation Constraints World

city

loc

CA

1
1

2
1

c 2 city

l 2 loc

s 2 CA

city

San Francisco

Chicago

New York

....

loc

Manhattan New York

San Francisco California

Chicago Illinois

... ...

CA

California

30



DCS Language (Liang et al. (2011))
I Tree structured, nodes are predicates and edges are relations.
I Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation Constraints World

city

loc

CA

1
1

2
1

c 2 city

l 2 loc

s 2 CA

c1 = l1

l2 = s1

city

San Francisco

Chicago

New York

....

loc

Manhattan New York

San Francisco California

Chicago Illinois

... ...

CA

California
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DCS Language (Liang et al. (2011))

I Tree structured, nodes are predicates and edges are relations.

I Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation Constraints

city

loc

CA

1
1

2
1

c 2 city

l 2 loc

s 2 CA

c1 = l1

l2 = s1

Expansion: �c.9l .9s.city(c) ^ loc(l ,CA) ^ CA(s) ^ c1 = l1 ^ l2 = s1
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DCS Language: Another Join Example

I Defines a constraint satisfaction problem (CSP)

I Computing constraints can be done in linear time using dynamic

programming.

I Tree structure: Keeps computation and search tractable, why?
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DCS Language: Other Relations

I 5 other relations: aggregate, execute, extract, quantify, compare.

I Aggregate relation: captures higher-order phenomena that go beyond

basic CSPs.
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Comparison with Lambda Calculus (again)

Lambda Calculus DCS

Formulae

�x .city(x) ^ loc(x , CA)

Predicates

�x .state(x) state

�x .�y .borders(x , y) border

�p.�x .p(x) ^major(x) major

Functions

�g .argmax(g ,�x .size(x)) argmax
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Instantiating Predicates and Generating Trees

CA

The most populous city in CA

I String Match: between words and predicate names.
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Instantiating Predicates and Generating Trees

argmax CA

The most populous city in CA

I String Match: between words and predicate names.

I Function Words: small lexicon of function words.
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Instantiating Predicates and Generating Trees

city city

state state

argmax population population CA

The most populous city in CA

I String Match: between words and predicate names.

I Function Words: small lexicon of function words.

I Pos Tags: Find nouns and adjectives.

I k-best parsing: enumerate trees using k-best parser, update on good

trees using variant of EM (by now a typical approach)
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Learning and Knowledge Representation

I Big Idea: Learning puts certain constraints on knowledge representation.

I Theoretical Question: What representations are needed to make the
semantic learning problem tractable?

I Learning from Logical Form: Generally agnostic to such
questions, having target representations enforces constraints.

I Learning from Denotation: Is more sensitive to type of
knowledge representation, hard computational problem.

I Liang et al. (2011): Choose a simplified, more domain specific, version of

lambda calculus, reduce to constraint satisfaction problem.
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What about Reasoning?

I How do these di↵erent subproblems interact?

input sem

List samples that contain
every major element

world

JsemK ={S10019,S10059,...}

Semantic Parsing

Reasoning

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /

SAMPLE : (CONTAINS Y X);

(PRINTOUT Y)))

Knowledge Representation

Lunar QA system (Woods (1973))
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What about Reasoning?

I How do these di↵erent subproblems interact?

input sem

List all samples that contain
every major element

!
List some sample that contains
every major element

world

JsemK ={S10019,S10059,...} ◆ {S10019}

Semantic Parsing

Reasoning

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /

SAMPLE : (CONTAINS Y X);

(PRINTOUT Y)))

Knowledge Representation
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Recognizing Textual Entailment (RTE)

I Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: Norway’s most famous painting, ’The Scream’ by Edward Munch, ....

Hypothesis: Edward Much painted ’The Scream’

True
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Recognizing Textual Entailment (RTE)

I Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: Google files for its long awaited IPO

Hypothesis: Google goes public

True
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Recognizing Textual Entailment (RTE)

I Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: The president of Norway made an o�cial visit to the United States

Hypothesis: Angela Merkel yesterday visited the United States.

False/Uncertain
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Learning to Sportscast

I Learning from “grounded” supervision.

I Minimal annotation e↵ort.

Supervision: Dataset D
input x Pink3 quickly passes over to pink7

sem z ⇠ JzK {pass( pink3 , pink7 ),...}
Event Streams: D = {(x

i

, {z1, ...z
k

})}N
i=1

Task: learn (latent) y, translation

Chen and Mooney (2008)

world JzK

2

3

4

1

6

7

8

9

10

11
4

2

3

1

5

67
8

9
10

y

Game Simulator

Sportscaster corpus (Chen and Mooney (2008))
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Requirements for Semantic Representations

I Minimal requirement: Semantic parser should be able to recognize

certain types of inferences.

Text Input Hypotheses Entailments

input t: Pink3 quickly kicks to Pink7
?�!

h1: pink3 kicks the ball

h2: pink3 blocks ball

h3: pink3 passes near midfield

Entail

Contradict

Unknown

sem z: pass(pink3,pink7)

world JzK

2

3

4

1

6

7

8

9

10

11
4

2

3

1

5

67
8

9
10 h1

¬h2

?h3
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Learning from Entailment (Richardson and Kuhn (2016))

I Goal: Use textual entailment judgements as weak supervision to help

train a semantic parser.

I Learn more precise representations and domain knowledge, account for

inferential patterns.

Text Input Hypotheses Entailments

input t: Pink3 quickly kicks to Pink7
?�!

h1: pink3 kicks the ball

h2: pink3 blocks ball

h2: pink3 passes near midfield

Entail

Contradict

Unknown

sem z: pass(pink3,pink7)

world JzK

2

3

4

1

6

7

8

9

10

11
4

2

3

1

5

67
8

9
10 h1

¬h2

?h2
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Motivation: Crude Representations

I Target representations are not expressive, underspecified

I Not based on background logical theory (no knowledge)

Entailment

Text t Hypothesis h

t!h

h!t

Naive (do reps match?)

1.

Pink 3 quickly kicks

to pink 1
pass(pink3,pink1)

Pink 3 kicks over to

pink 1 near midfield
pass(pink3,pink1)

Unknown

Unknown
Entail

2.

Purple player 10

kicks the ball
kick(purple10)

Purple 10 again

shoots for the goal
kick(purple10)

Unknown

Entail
Entail

I Desiderata: explicit treatment of modifiers
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Motivation: Missing Knowledge

I Target representations are not expressive, underspecified.

I Not based on background logical theory (no knowledge)

Entailment

Text t Hypothesis h

t!h

h!t

Naive (do reps match?)

3.
Pink 10 kicks the

ball kick(pink10)

Pink 10 passes over

to pink1
pass(pink10,pink1)

Unknown

Entail
Contr.

4.

Purple 7 makes a

long kick
kick(purple7)

Purple team scores

another goal
playmode(goal l)

Unknown

Unknown
Contr.

I Desiderata: explicit treatment of modifiers, sense distinctions, abstract

relations between symbols
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Learning from Entailment

I Entailments are used to reason about target symbols and find holes in the

analyses.

input: (t,h) t pink3 � passes to pink1

a

h pink3 quickly kicks �

y
pink3 ⌘ pink3

I
pink3 ⌘ pink3

� wv
c

I
� w quickly

pass v kick, pink1 v �
./

passes to pink1 v kicks
./

passes to pink 1 # quickly kicks
./

pink3 passes to pink1 # pink3 quickly kicks

sem z Uncertain

world

pink3/pink3

�/w
c

pass/kick

pink1/�

Data: D = {((t, h)
i

, z
i

)}N
i=1, Task: learn (latent) proof y
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Learning from Entailment

I Entailments are used to reason about target symbols and find holes in the

analyses.
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Learning from Entailment

I Entailments are used to reason about target symbols and find holes in the

analyses.
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Learning from Entailment

I Entailments are used to reason about target symbols and find holes in the

analyses.

input: (t,h) t pink3 � passes to pink1

a

h pink3 quickly kicks �

y
pink3 ⌘ pink3

I
pink3 ⌘ pink3

� wv
c

I
� w quickly

pass v kick, pink1 v �
./

passes to pink1 v kicks
./

passes to pink 1 # quickly kicks
./

pink3 passes to pink1 # pink3 quickly kicks

sem z Uncertain

world

pink3/pink3

�/w
c

pass/kick

pink1/�

Data: D = {((t, h)
i

, z
i

)}N
i=1, Task: learn (latent) proof y
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Learning from Entailment

I Entailments are used to reason about target symbols and find holes in the

analyses.

input: (t,h) t pink3 � passes to pink1

a

h pink3 quickly kicks �

y
pink3 ⌘ pink3

I
pink3 ⌘ pink3

� wv
c

I
� w quickly

pass v kick, pink1 v �
./

passes to pink1 v kicks
./

passes to pink 1 # quickly kicks
./

pink3 passes to pink1 # pink3 quickly kicks

sem z Uncertain

world

pink3/pink3

�/w
c

pass/kick

pink1/�

Data: D = {((t, h)
i

, z
i

)}N
i=1, Task: learn (latent) proof y
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Learning from Entailment: Proofs

pink3 ⌘ pink3
I

pink3 ⌘ pink3

� wv
c

I
� w quickly

pass v kick, pink1 v �
./

passes to pink1 v kicks
./

passes to pink 1 # quickly kicks
./

pink3 passes to pink1 # pink3 quickly kicks

I Logical inference: requires logical inference, in this case using the
natural logic calculus (MacCartney and Manning (2009)).

I
I : axioms, set-theoretic relations between symbols.

pass v kick

pass

kick
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Learning from Entailment: Proofs

pink3 ⌘ pink3
I

pink3 ⌘ pink3
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I
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./
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I Logical inference: requires logical inference, in this case using the
natural logic calculus (MacCartney and Manning (2009)).

I
I : axioms, set-theoretic relations between symbols.
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Learning from Entailment: Proofs

pink3 ⌘ pink3
I

pink3 ⌘ pink3

� wv
c

I
� w quickly

pass v kick, pink1 v �
./

passes to pink1v kicks
./

passes to pink 1 # quickly kicks
./

pink3 passes to pink1 # pink3 quickly kicks

I Logical inference: requires logical inference, in this case using the
natural logic calcluls (MacCartney and Manning (2009); Icard III (2012)).

I
I : axioms, set-theoretic relations between symbols.

I ./: natural logic join inference rule

v ./ v=v
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Learning from Entailment: Proofs

pink3 ⌘ pink3
I

pink3 ⌘ pink3

� wv
c

I
� w quickly

pass v kick, pink1 v �
./

passes to pink1v kicks
./

passes to pink 1 # quickly kicks
./

pink3 passes to pink1 # pink3 quickly kicks

I Logical inference: requires logical inference, in this case using the
natural logic calcluls (MacCartney and Manning (2009); Icard III (2012)).

I
I : axioms, set-theoretic relations between symbols.

I ./: natural logic inference rules, algebraic

I Latent variable: axioms or relations, inference rules are constant.
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Outline of Approach

I Step 1: Learn a base semantic parser on normal data (i.e. sentences !
logic) using a PCFG approach

I Step 2: Retrain on inference pairs using extended inference grammar

(i.e. sentences ! logic, pairs ! proofs).

I What’s needed: inference dataset, logical calculus and learning

algorithm.

I For this talk, let’s assume that we have already learned a semantic

grammar.
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logic) using a PCFG approach

I Step 2: Retrain on inference pairs using extended inference grammar
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algorithm.
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grammar.
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Pairs to Proofs

I Going from pairs of text to proofs.

I two components: semantic relations, inference rules (joins and functions).

Transform t into h.

((t: purple7 kicks the ball, h: purple team scores a goal), Uncertain)

transform. kick

sub.��! score purple7

sub.��! purple team

relation.

score

kick

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference
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Pairs to Proofs

I Going from pairs of text to proofs.

I two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple7 kicks the ball, h: purple team scores a goal), Uncertain)

transform. kick

sub.��! score purple7

sub.��! purple team

relation. w v

score

kick

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference

symbol definition
v x ⇢ y

w x � y

⌘ x = y

| neg.

# other
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Pairs to Proofs

I Going from pairs of text to proofs.

I two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple7 kicks the ball, h: purple team scores a goal), Uncertain)

transform. kick

sub.��! score purple7

sub.��! purple team

relation. w v

score

kick

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference (w ./v) = #(Uncertain)

symbol definition
v x ⇢ y

w x � y

⌘ x = y

| neg.

# other

./ ⌘ v w | #
⌘ ⌘ v w | #
v v v # | #
w w # w # #
| | # | # #
# # # # # #
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Pairs to Proofs

I Going from pairs of text to proofs.

I two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple7 kicks the ball, h: purple team scores a goal), Uncertain)

transform. kick

sub.��! score purple7

sub.��! purple team

relation. w w

score

kick

7 purple

pur7

4

7

3
1

5
62

8

9
10

inference (w ./w) =w (Uncertain)

symbol definition
v x ⇢ y

w x � y

⌘ x = y

| neg.

# other

./ ⌘ v w | #
⌘ ⌘ v w | #
v v v # | #
w w # w # #
| | # | # #
# # # # # #
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Pairs to Proofs

I Going from pairs of text to proofs.

I two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple7 scores a goal, h: purple7 kicks the ball), Entail)

transform. score

sub.��! kick purple7

sub.��! purple7

relation. v ⌘

score

kick

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference (v ./⌘) =v (Entail)

./ ⌘ v w | #
⌘ ⌘ v w | #
v v v # | #
w w # w # #
| | # | # #
# # # # # #
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Pairs to Proofs

I Going from pairs of text to proofs.

I two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple7 scores a goal, h: purple7 kicks the ball again), Uncertain)

transform. score

sub.��! kick �
ins.��!v

c

purple7

sub.��! purple7

relation. v w ⌘

score

kick

v./w= #

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference (# ./⌘) = #(Uncertain)

modifier

./ ⌘ v w | #
⌘ ⌘ v w | #
v v v # | #
w w # w # #
| | # | # #
# # # # # #
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Pairs to Proofs

I Going from pairs of text to proofs.

I two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple7 scores a goal again, h: purple7 kicks the ball), Entail)

transform. score

sub.��! kick v
c

del.��! � purple7

sub.��! purple7

relation. v v ⌘

score

kick

v./v=v

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference (v ./⌘) =v (Entail)

modifier

./ ⌘ v w | #
⌘ ⌘ v w | #
v v v # | #
w w # w # #
| | # | # #
# # # # # #
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Pairs to Proofs

I Going from pairs of text to proofs.

I two components: semantic relations, inference rules (joins
and functions). Transform t into h.

((t: purple7 scores a goal, h: purple7 kicks the ball), Entail)

transform. score

sub.��! kick �
ins.��!⌘

c

purple7

sub.��! purple7

relation. v ⌘ ⌘

score

kick

v./⌘=v

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference (v ./⌘) =v (Entail)

modifier

./ ⌘ v w | #
⌘ ⌘ v w | #
v v v # | #
w w # w # #
| | # | # #
# # # # # #
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Pairs to Proofs

I Going from pairs of text to proofs.

I two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple7 kicks, h: purple7 shoots for the goal), Uncertin)

transform. kick

sub.��! kick 1 purple7

sub.��! purple7

relation. w ⌘

score

kick

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference (w ./⌘) =w (Uncertain)

./ ⌘ v w | #
⌘ ⌘ v w | #
v v v # | #
w w # w # #
| | # | # #
# # # # # #
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Learning from Entailment: General Idea

I Generating proofs is done jointly with learning an ordinary semantic

parser, both help each other.

I Learning is done using a version of the EM algorithm.

pink 3 kicks kick(pink3)

x y z

input d world

x = (t, h) y z

(pink 3 kicks,pink team kicks)
v./⌘play-intr=v

⌘
play�intr.

kick/kick

kicks/kicks

v
player

arg1

pink3/pink team

pink 3/pink team

Entail

judgement

pink3/pink team kicks/kicks

Parsing Model ✓

Semantic/Inference Grammar

Interpretation

|! Contradict

alignment

69



Learning from Entailment: General Idea

I Generating proofs is done jointly with learning an ordinary semantic
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⌘
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Learned knowledge

I Learned lexical relations from example proof trees.

(t, h): (pink team is o↵sides,purple 9 passes) (bad pass.., loses the ball to)

analysis:

|
team

arg1

substitute

pink team/purple9

“pink team’/“purple 9”

vplay-tran

substitute

bad pass/turnover

“bad pass .. picked o↵ by”/“loses the ball to”

relation: pink team | purple9 bad pass v turnover

(t, h): (free kick for, steals the ball from) (purple 6 kicks to,purple 6 kicks)

analysis:

|game-play

substitute

free kick/steal

“free kick for”/“steals the ball from”

vplay-tran.

substitute

pass/kick

“kicks to”/“kicks’

relation: free kick| steal pass v kick
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Learned knowledge

I Learned modifiers from example proof trees.

(t, h): (a beautiful pass to,passes to) (gets a free kick,freekick from the)

analysis:

vc ./⌘play-tran=vplay-tran

modifier
⌘play-tran.

pass/pass

“pass to’/“passes to”

vc

vc /�

“a beautiful”/�

⌘c ./⌘game-play=⌘game-play

modifier
⌘game-play

freekick/freekick

“free kick” / “freekick from the”

⌘c

⌘c /�

“gets a”/�

generalization: beautiful(X ) v X get(X ) ⌘ X

(t, h): (yet again passes to,kicks to) (purple 10,purple 10 who is out front)

analysis:

vc ./⌘play-tran.=vplay-tran

modifier

⌘play-tran.

pass/pass

“passes to”/“kicks to”

vc

vc /�

“yet again”/�

⌘
player

arg2 ./wc=w
player

arg2

modifier

wc

�/ vc

�/“who is out front”

⌘
player

arg2

purple10/purple10

“purple 10”/“purple 10”

generalization: yet-again(X ) v X X w out front(X )
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Conclusions

I Tried to fill in the gaps in this overall pipeline model

I While people have studied the di↵erent sub-problems independently of

one another, it’s important to have a holistic view of the problem.

I We looked at issues related to knowledge representation and inference.
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Thank You!
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