
Lecture 2: Mixing Compositional and Statistical
Semantics

Kyle Richardson

kyle@ims.uni-stuttgart.de

May 20, 2016

Plan

I main paper: Liang and Potts 2015 (conceptual basis of class)

I secondary: Mooney 2007 (semantic parsing big ideas),
Domingos 2012 (remarks about ML)

2

Classical Semantics vs. Statistical Semantics (caricature)

I Logical Semantics: Logic, algebra, set theory
I compositional analysis, beyond words, inference, brittle.

I Statistical Semantics: Optimization, algorithms, geometry
I distributional analysis, word-based, grounded, shallow.

“The two types of approaches share the long-term vision of achieving

deep natural language understanding...”

3

Montague-style Compositional Semantics

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: John studies.

john’ −→ “John”
(λx .(study’ x)) −→ “studies”

(λx .(study’ x))(john)→ (study’ john’)→ {True,False}

(λx .(study’ x))

studies

john’

John

4

Montague-style Compositional Semantics

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: John studies.

john’ −→ “John”
(λx .(study’ x)) −→ “studies”

(λx .(study’ x))(john)→ (study’ john’)→ {True,False}

(λx .(study’ x))

studies

john’

John

4

A mini functional interpreter (python)

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: John studies.

john’ −→ “John”
(λx .(study’ x)) −→ “studies”

>>> students studying = set([”john”, ”mary”])
>>> study = lambda x : x in students studying
>>> fun application = lambda fun, val : fun(val)

>>> fun application(study , ”bill”) ## What will we get?
>>> False

5

A mini functional interpreter (python)

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: John studies.

john’ −→ “John”
(λx .(study’ x)) −→ “studies”

>>> students studying = set([”john”, ”mary”])
>>> study = lambda x : x in students studying
>>> fun application = lambda fun, val : fun(val)
>>> fun application(study , ”bill”) ## What will we get?

>>> False

5

A mini functional interpreter (python)

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: John studies.

john’ −→ “John”
(λx .(study’ x)) −→ “studies”

>>> students studying = set([”john”, ”mary”])
>>> study = lambda x : x in students studying
>>> fun application = lambda fun, val : fun(val)
>>> fun application(study , ”bill”) ## What will we get?
>>> False

5

A mini functional interpreter (python)

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: John studies.

john’ −→ “John”
(λx .(study’ x)) −→ “studies”

>>> students studying = set([”john”, ”mary”])
>>> study = lambda x : x in students studying
>>> fun application = lambda fun, val : fun(val)
>>> fun application(study , ”mary”) ## What will we get?

>>> True

6

A mini functional interpreter (python)

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: John studies.

john’ −→ “John”
(λx .(study’ x)) −→ “studies”

>>> students studying = set([”john”, ”mary”])
>>> study = lambda x : x in students studying
>>> fun application = lambda fun, val : fun(val)
>>> fun application(study , ”mary”) ## What will we get?
>>> True

6

Montague-style Compositional Semantics

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.

bill’ −→ “Bill”
(λx .(study’ x)) −→ “study”

(λf .λx .(not (f x))) −→ “does not”

(λx .(not (study’ x)))(bill)

(λx .(not (study’ x)))

(λx .(study’ x))

study

(λf .λx .(not (f x)))

does not

bill’

Bill

7

Montague-style Compositional Semantics

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.

bill’ −→ “Bill”
(λx .(study’ x)) −→ “study”

(λf .λx .(not (f x))) −→ “does not”

(λx .(not (study’ x)))(bill)

(λx .(not (study’ x)))

(λx .(study’ x))

study

(λf .λx .(not (f x)))

does not

bill’

Bill

7

A mini functional interpreter (python)

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.

bill’ −→ “Bill”
(λx .(study’ x)) −→ “study”

(λf .λx .(not (f x))) −→ “does not”

>>> students studying = set([”john”, ”mary”])
>>> study = lambda x : x in students studying
>>> fun application = lambda fun, val : fun(val)
>>> neg = lambda F : (lambda x : not F(x))

>>> neg(study)(”bill”) # True

>>> fun application(neg,study)(”bill”)
>>> fun application(fun application(neg,study),”bill”)
>>> neg(neg(sleep))(”bill”)

8

A mini functional interpreter (python)

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.

bill’ −→ “Bill”
(λx .(study’ x)) −→ “study”

(λf .λx .(not (f x))) −→ “does not”

>>> students studying = set([”john”, ”mary”])
>>> study = lambda x : x in students studying
>>> fun application = lambda fun, val : fun(val)
>>> neg = lambda F : (lambda x : not F(x))
>>> neg(study)(”bill”) # True

>>> fun application(neg,study)(”bill”)
>>> fun application(fun application(neg,study),”bill”)
>>> neg(neg(sleep))(”bill”)

8

A mini functional interpreter (python)

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.

bill’ −→ “Bill”
(λx .(study’ x)) −→ “study”

(λf .λx .(not (f x))) −→ “does not”

>>> students studying = set([”john”, ”mary”])
>>> study = lambda x : x in students studying
>>> fun application = lambda fun, val : fun(val)
>>> neg = lambda F : (lambda x : not F(x))
>>> neg(study)(”bill”) # True

>>> fun application(neg,study)(”bill”)

>>> fun application(fun application(neg,study),”bill”)
>>> neg(neg(sleep))(”bill”)

8

A mini functional interpreter (python)

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.

bill’ −→ “Bill”
(λx .(study’ x)) −→ “study”

(λf .λx .(not (f x))) −→ “does not”

>>> students studying = set([”john”, ”mary”])
>>> study = lambda x : x in students studying
>>> fun application = lambda fun, val : fun(val)
>>> neg = lambda F : (lambda x : not F(x))
>>> neg(study)(”bill”) # True

>>> fun application(neg,study)(”bill”)
>>> fun application(fun application(neg,study),”bill”)

>>> neg(neg(sleep))(”bill”)

8

A mini functional interpreter (python)

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.

bill’ −→ “Bill”
(λx .(study’ x)) −→ “study”

(λf .λx .(not (f x))) −→ “does not”

>>> students studying = set([”john”, ”mary”])
>>> study = lambda x : x in students studying
>>> fun application = lambda fun, val : fun(val)
>>> neg = lambda F : (lambda x : not F(x))
>>> neg(study)(”bill”) # True

>>> fun application(neg,study)(”bill”)
>>> fun application(fun application(neg,study),”bill”)
>>> neg(neg(sleep))(”bill”)

8

Montague-style Compositional Semantics: What’s needed

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.

bill’ −→ “Bill”
(λx .(study’ x)) −→ “study”

(λf .λx .(not (f x))) −→ “does not”

I Grammar rules for building syntactic structure.

I Interpretation rules to composing meaning.

I Decoding algorithm for generating structures

9

Montague-style Compositional Semantics: Issues

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.

bill’ −→ “Bill”
(λx .(study’ x)) −→ “study”

(λf .λx .(not (f x))) −→ “does not”

Features and (Computational) Issues:

I compositional, provides a full analysis.

I supports further inferencing

I issue: Does not provide an analysis of words (not grounded).

I issue: Is brittle, cannot handle uncertainty.

I issue: Says nothing about how the translation to logic works.

10

Montague-style Compositional Semantics: Issues

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.

bill’ −→ “Bill”
(λx .(study’ x)) −→ “study”

(λf .λx .(not (f x))) −→ “does not”

Features and (Computational) Issues:

I compositional, provides a full analysis.

I supports further inferencing

I issue: Does not provide an analysis of words (not grounded).

I issue: Is brittle, cannot handle uncertainty.

I issue: Says nothing about how the translation to logic works.

10

Montague-style Compositional Semantics: Issues

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.

bill’ −→ “Bill”
(λx .(study’ x)) −→ “study”

(λf .λx .(not (f x))) −→ “does not”

Features and (Computational) Issues:

I compositional, provides a full analysis.

I supports further inferencing

I issue: Does not provide an analysis of words (not grounded).

I issue: Is brittle, cannot handle uncertainty.

I issue: Says nothing about how the translation to logic works.

10

Montague-style Compositional Semantics: Issues

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.

bill’ −→ “Bill”
(λx .(study’ x)) −→ “study”

(λf .λx .(not (f x))) −→ “does not”

Features and (Computational) Issues:

I compositional, provides a full analysis.

I supports further inferencing

I issue: Does not provide an analysis of words (not grounded).

I issue: Is brittle, cannot handle uncertainty.

I issue: Says nothing about how the translation to logic works.

10

Statistical Approaches to Semantics

Statistical semantics hypothesis: “Statistical patterns of human
word usage can be used to figure out what people mean” Turney
et al. (2010)

corpus word-context matrix
The furry dog is walking outside... furry walking shiny driving

dog 10 20 0 0
cat 12 25 2 0
car 0 0 23 26
bike 0 1 30 25

The shiny car is driving...

A furry cat is walking around...

A shiny bike is driving....

....

11

Statistical Approaches to Semantics

Statistical semantics hypothesis: “Statistical patterns of human
word usage can be used to figure out what people mean” Turney
et al. (2010)

corpus word-context matrix
furry walking shiny driving

dog 4 20 0 0
cat 3 25 2 0
car 0 0 5 26
bike 1 1 4 25

12

Example Tasks and Applications: Turney et al. (2010)

Statistical semantic models are often used in downstream
classification or clustering tasks/applications.

I Term-document matrices
I Document retrieval/clustering/classification.
I Question Answering and Retrieval.
I Essay scoring.

I Word-Context Matrices
I Word similarity/clustering/classification
I Word-sense disambiguation
I Automatic thesaurus generation/paraphrasing

I Pair-pair matrices
I Relational similarity/clustering/classification.
I Analogy comparison.

13

Statistical Approaches to Semantics

Statistical semantics hypothesis: “Statistical patterns of human
word usage can be used to figure out what people mean” Turney
et al. (2010)

corpus word-context matrix
The furry dog is walking outside... furry walking shiny driving

dog 10 20 0 0
cat 12 25 2 0
car 0 0 23 26
bike 0 1 30 25

The shiny car is driving...

A furry cat is walking around...

A shiny bike is driving....

....

Features and Issues (caricature):
I Robust, requires little manual effort, grounded
I Can provide rich analysis of content words.

I issue: Hard to scale beyond words.
I issue: In general, hard to model logical operations, shallow.

14

Statistical Approaches to Semantics

Statistical semantics hypothesis: “Statistical patterns of human
word usage can be used to figure out what people mean” Turney
et al. (2010)

corpus word-context matrix
The furry dog is walking outside... furry walking shiny driving

dog 10 20 0 0
cat 12 25 2 0
car 0 0 23 26
bike 0 1 30 25

The shiny car is driving...

A furry cat is walking around...

A shiny bike is driving....

....

Features and Issues (caricature):
I Robust, requires little manual effort, grounded
I Can provide rich analysis of content words.
I issue: Hard to scale beyond words.

I issue: In general, hard to model logical operations, shallow.

14

Statistical Approaches to Semantics

Statistical semantics hypothesis: “Statistical patterns of human
word usage can be used to figure out what people mean” Turney
et al. (2010)

corpus word-context matrix
The furry dog is walking outside... furry walking shiny driving

dog 10 20 0 0
cat 12 25 2 0
car 0 0 23 26
bike 0 1 30 25

The shiny car is driving...

A furry cat is walking around...

A shiny bike is driving....

....

Features and Issues (caricature):
I Robust, requires little manual effort, grounded
I Can provide rich analysis of content words.
I issue: Hard to scale beyond words.
I issue: In general, hard to model logical operations, shallow.

14

Mixing compositional and statistical semantics

Desiderata: Want a model of semantics that is robust, reflects
real-word usage and learnable, but one that is also compositional.

I Generalization
I Logical semantics: generalize using composition and

abstract recursive structures.
I Machine Learning (classification): learns generalizations

through real-world examples (e.g. target input-output)

I Bridge: get our learning to target compositional structures.

15

Mixing compositional and statistical semantics

Desiderata: Want a model of semantics that is robust, reflects
real-word usage and learnable, but one that is also compositional.

I Generalization

I Logical semantics: generalize using composition and
abstract recursive structures.

I Machine Learning (classification): learns generalizations
through real-world examples (e.g. target input-output)

I Bridge: get our learning to target compositional structures.

15

Mixing compositional and statistical semantics

Desiderata: Want a model of semantics that is robust, reflects
real-word usage and learnable, but one that is also compositional.

I Generalization
I Logical semantics: generalize using composition and

abstract recursive structures.

I Machine Learning (classification): learns generalizations
through real-world examples (e.g. target input-output)

I Bridge: get our learning to target compositional structures.

15

Mixing compositional and statistical semantics

Desiderata: Want a model of semantics that is robust, reflects
real-word usage and learnable, but one that is also compositional.

I Generalization
I Logical semantics: generalize using composition and

abstract recursive structures.
I Machine Learning (classification): learns generalizations

through real-world examples (e.g. target input-output)

I Bridge: get our learning to target compositional structures.

15

Mixing compositional and statistical semantics

Desiderata: Want a model of semantics that is robust, reflects
real-word usage and learnable, but one that is also compositional.

I Generalization
I Logical semantics: generalize using composition and

abstract recursive structures.
I Machine Learning (classification): learns generalizations

through real-world examples (e.g. target input-output)

I Bridge: get our learning to target compositional structures.

15

A simple model: Liang and Potts

Model: a simple discriminative learning framework.

I compositional model: (semantic) context-free grammar.

I learning model: linear classification and first-order
optimization.

16

Compositional Model:

Linguistic Objects: < u, s, d >

I u: utterance

I s: semantic representation (symbolized as ˆuˆ)

I d: denotation (symbolized as JsK)

Example: < ’seven minus five’, (- 7 5), 2 >
< ’two minus two times two’, (* (- 2 2) 2), 0 >

semantic parsing: u → s
interpretation: s → d

17

Compositional Model:

Linguistic Objects: < u, s, d >

I u: utterance

I s: semantic representation (symbolized as ˆuˆ)

I d: denotation (symbolized as JsK)

Example: < ’seven minus five’, (- 7 5), 2 >

< ’two minus two times two’, (* (- 2 2) 2), 0 >

semantic parsing: u → s
interpretation: s → d

17

Compositional Model:

Linguistic Objects: < u, s, d >

I u: utterance

I s: semantic representation (symbolized as ˆuˆ)

I d: denotation (symbolized as JsK)

Example: < ’seven minus five’, (- 7 5), 2 >
< ’two minus two times two’, (* (- 2 2) 2), 0 >

semantic parsing: u → s
interpretation: s → d

17

Compositional Model:

Linguistic Objects: < u, s, d >

I u: utterance

I s: semantic representation (symbolized as ˆuˆ)

I d: denotation (symbolized as JsK)

Example: < ’seven minus five’, (- 7 5), 2 >
< ’two minus two times two’, (* (- 2 2) 2), 0 >

semantic parsing: u → s

interpretation: s → d

17

Compositional Model:

Linguistic Objects: < u, s, d >

I u: utterance

I s: semantic representation (symbolized as ˆuˆ)

I d: denotation (symbolized as JsK)

Example: < ’seven minus five’, (- 7 5), 2 >
< ’two minus two times two’, (* (- 2 2) 2), 0 >

semantic parsing: u → s
interpretation: s → d

17

Computational Modeling: The full picture

I Standard processing pipeline

input sem

List samples that contain
every major element

world

JsemK ={S10019,S10059,...}

Semantic Parsing

Interpretation

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /

SAMPLE : (CONTAINS Y X);

(PRINTOUT Y)))

Knowledge Representation

Lunar QA system (Woods (1973))

18

Compositional Model: Context-free grammar

I provides the background grammar and interpretation rules

19

Compositional Model: Context-free grammar

I provides the background grammar and interpretation rules

I example: u = two times two plus three

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

>>> plus = lambda x,y : x + y
>>> mult = lambda x,y : x * y
>>> plus(2,2) # 4

20

Compositional Model: Context-free grammar

I provides the background grammar and interpretation rules

I example: u = two times two plus three

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

>>> plus = lambda x,y : x + y
>>> mult = lambda x,y : x * y

>>> plus(2,2) # 4

20

Compositional Model: Context-free grammar

I provides the background grammar and interpretation rules

I example: u = two times two plus three

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

>>> plus = lambda x,y : x + y
>>> mult = lambda x,y : x * y
>>> plus(2,2) # 4

20

Compositional Model: Context-free grammar

I provides the background grammar and interpretation rules

I example: u = two times two plus three

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

>>> plus = lambda x,y : x + y
>>> mult = lambda x,y : x * y
>>> plus(plus(2,3),2) # 7

21

Compositional Model: Context-free grammar

I provides the background grammar and interpretation rules

I example: u = two times two plus three

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

>>> plus = lambda x,y : x + y
>>> mult = lambda x,y : x * y
>>> plus(mult(2,2),3) # 7

22

Compositional Model: Components

I Components:
I Grammar rules for building syntactic structure. X

I Interpretation rules to composing meaning. X
I Decoding algorithm for generating structures × (later lecture)
I Rule extraction × (later lecture)

I Issues:
I example: u = two times two plus three

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

23

Compositional Model: Components

I Components:
I Grammar rules for building syntactic structure. X
I Interpretation rules to composing meaning. X

I Decoding algorithm for generating structures × (later lecture)
I Rule extraction × (later lecture)

I Issues:
I example: u = two times two plus three

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

23

Compositional Model: Components

I Components:
I Grammar rules for building syntactic structure. X
I Interpretation rules to composing meaning. X
I Decoding algorithm for generating structures × (later lecture)

I Rule extraction × (later lecture)

I Issues:
I example: u = two times two plus three

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

23

Compositional Model: Components

I Components:
I Grammar rules for building syntactic structure. X
I Interpretation rules to composing meaning. X
I Decoding algorithm for generating structures × (later lecture)
I Rule extraction × (later lecture)

I Issues:
I example: u = two times two plus three

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

23

Compositional Model: Components

I Components:
I Grammar rules for building syntactic structure. X
I Interpretation rules to composing meaning. X
I Decoding algorithm for generating structures × (later lecture)
I Rule extraction × (later lecture)

I Issues:

I example: u = two times two plus three

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

23

Compositional Model: Components

I Components:
I Grammar rules for building syntactic structure. X
I Interpretation rules to composing meaning. X
I Decoding algorithm for generating structures × (later lecture)
I Rule extraction × (later lecture)

I Issues:
I example: u = two times two plus three

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

23

Compositional Model: Components

I Components:
I Grammar rules for building syntactic structure. X
I Interpretation rules to composing meaning. X
I Decoding algorithm for generating structures × (later lecture)

I Issues:
I example: u = two times two plus three

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

N: (mult (plus 2 2) 3)

N : 3

three

R : mult

plus

N : (plus 2 2)

N : 2

two

R : mult

times

N : 2

two

24

Compositional Model: Components

I Components:
I Grammar rules for building syntactic structure. X
I Interpretation rules to composing meaning. X
I Decoding algorithm for generating structures × (later lecture)

I Issues:
I example: u = two times two plus three

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

N: (mult 2 (plus 2 3))

N : (plus 2 3)

N : 3

three

R: plus

plus

N : 2

two

R : mult

times

N : 2

two

25

Learning Model

I Goal: Helps us learn the correct derivations and handle
uncertainty (word mappings, composition).

I Classifier: “a system that inputs a vector of discrete and/or
continuous feature values and outputs a single discrete
value, the class.” Domingos (2012).

I Components
I training data D = {(xi , yi)|i ...n}
I feature representation of data
I scoring and objective function
I optimization procedure

26

Learning Model

I Goal: Helps us learn the correct derivations and handle
uncertainty (word mappings, composition).

I Classifier: “a system that inputs a vector of discrete and/or
continuous feature values and outputs a single discrete
value, the class.” Domingos (2012).

I Components
I training data D = {(xi , yi)|i ...n}
I feature representation of data
I scoring and objective function
I optimization procedure

26

Learning Model

I Goal: Helps us learn the correct derivations and handle
uncertainty (word mappings, composition).

I Classifier: “a system that inputs a vector of discrete and/or
continuous feature values and outputs a single discrete
value, the class.” Domingos (2012).

I Components

I training data D = {(xi , yi)|i ...n}
I feature representation of data
I scoring and objective function
I optimization procedure

26

Learning Model

I Goal: Helps us learn the correct derivations and handle
uncertainty (word mappings, composition).

I Classifier: “a system that inputs a vector of discrete and/or
continuous feature values and outputs a single discrete
value, the class.” Domingos (2012).

I Components
I training data D = {(xi , yi)|i ...n}

I feature representation of data
I scoring and objective function
I optimization procedure

26

Learning Model

I Goal: Helps us learn the correct derivations and handle
uncertainty (word mappings, composition).

I Classifier: “a system that inputs a vector of discrete and/or
continuous feature values and outputs a single discrete
value, the class.” Domingos (2012).

I Components
I training data D = {(xi , yi)|i ...n}
I feature representation of data

I scoring and objective function
I optimization procedure

26

Learning Model

I Goal: Helps us learn the correct derivations and handle
uncertainty (word mappings, composition).

I Classifier: “a system that inputs a vector of discrete and/or
continuous feature values and outputs a single discrete
value, the class.” Domingos (2012).

I Components
I training data D = {(xi , yi)|i ...n}
I feature representation of data
I scoring and objective function

I optimization procedure

26

Learning Model

I Goal: Helps us learn the correct derivations and handle
uncertainty (word mappings, composition).

I Classifier: “a system that inputs a vector of discrete and/or
continuous feature values and outputs a single discrete
value, the class.” Domingos (2012).

I Components
I training data D = {(xi , yi)|i ...n}
I feature representation of data
I scoring and objective function
I optimization procedure

26

Training data

Goal: Find the correct derivations and output using our
compositional model

Logical forms (more information)

I (u = ’two minus two times two’, s = (* (- 2 2) 2))

Denotations (less information)

I (u = ’two minus two times two’, r = 0)

Weakly Supervised: In both cases, details are still hidden from
the learner.

27

Training data

Goal: Find the correct derivations and output using our
compositional model

Logical forms (more information)

I (u = ’two minus two times two’, s = (* (- 2 2) 2))

Denotations (less information)

I (u = ’two minus two times two’, r = 0)

Weakly Supervised: In both cases, details are still hidden from
the learner.

27

Training data

Goal: Find the correct derivations and output using our
compositional model

Logical forms (more information)

I (u = ’two minus two times two’, s = (* (- 2 2) 2))

Denotations (less information)

I (u = ’two minus two times two’, r = 0)

Weakly Supervised: In both cases, details are still hidden from
the learner.

27

Training data

Goal: Find the correct derivations and output using our
compositional model

Logical forms (more information)

I (u = ’two minus two times two’, s = (* (- 2 2) 2))

Denotations (less information)

I (u = ’two minus two times two’, r = 0)

Weakly Supervised: In both cases, details are still hidden from
the learner.

27

Learning from Semantic Representations

I example: (two times two plus three,(plus (mult 2 2) 3))

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mul

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

I Trade off: More information (good) but more annotation (bad)

28

Learning from Semantic Representations

I example: (two times two plus three,(plus (mult 2 2) 3))

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mul

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

I Trade off: More information (good) but more annotation (bad)

28

Learning from Denotations

I example: (two times two plus three,7)

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mul

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

I Trade off: Less annotation (good) but less information (maybe bad)

29

Learning from Denotations

I example: (two times two plus three,7)

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mul

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

I Trade off: Less annotation (good) but less information (maybe bad)

29

Weak Supervision

Goal: Find the correct derivations and output using our
compositional model

Logical forms (more information)

I (u = ’two minus two times two’, s = (* (- 2 2) 2))

Denotations (less information)

I (u = ’two minus two times two’, r = 0)

“Current learning methods for NLP require annotating large corpora with supervisory

information ...[e.g. pos tags, syntactic parse trees, semantic role labels] ... Building

such corpora is an expensive, arduous task. As one moves towards deeper semantic

analysis the annotation task becomes increasingly more difficult and complex.”

Mooney (2008)

30

Feature Representations: General Remark

“At the end of the day, some machine learning projects succeed and fail. What

makes the difference? Easily the most important factor is the features used.”

Domingos (2012)

31

Feature selection and overfitting

”What if the knowledge and data we have are not sufficient to completely

determine the correct classifier? Then we run the risk of just hallucinating a

classifier (or parts of it) that is not grounded in reality .. This problem is called

overfitting.” Domingos (2012)

I Bias: Tendency to consistently learn the wrong thing.

I Variance: Tendency to learn random things irrespective of the real

signal.

32

Good vs. Bad Feature Selection

33

Feature Extraction Example

input: x = two times two plus three.

y1 = N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

y2 = N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

φ(x,y1) =

R : mult [’times’] → 1

R : plus [’plus’] → 1

top [R : plus] → 1

...

φ(x,y2) =

R : plus [’times’] → 1

R : plus [’plus’] → 1

top [R : plus] → 1

...

34

Scoring Function

(Linear) Score Function

I Scorew (x,y) = w · φ(x , y) =
∑d

j=1 wjφ(x , y)

I weight vector w = [w1 = 0.1 w2 = 0.2 w3 = 0.0 ...]

φ(x,y2) =

w1 R : plus [’times’] → 1

w2 R : plus [’plus’] → 1

w3 top [R : plus] → 1

...

scorew (x , y2) = w · φ(x , y2) = (0.1 ∗ 1.0) + (0.2 ∗ 1.0) + (0.0 ∗ 1.0)

35

Scoring Function

(Linear) Score Function

I Scorew (x,y) = w · φ(x , y) =
∑d

j=1 wjφ(x , y)

I weight vector w = [w1 = 0.1 w2 = 0.2 w3 = 0.0 ...]

φ(x,y2) =

w1 R : plus [’times’] → 1

w2 R : plus [’plus’] → 1

w3 top [R : plus] → 1

...

scorew (x , y2) = w · φ(x , y2) = (0.1 ∗ 1.0) + (0.2 ∗ 1.0) + (0.0 ∗ 1.0)

35

Scoring Function

(Linear) Score Function

I Scorew (x,y) = w · φ(x , y) =
∑d

j=1 wjφ(x , y)

I weight vector w = [w1 = 0.1 w2 = 0.2 w3 = 0.0 ...]

φ(x,y2) =

w1 R : plus [’times’] → 1

w2 R : plus [’plus’] → 1

w3 top [R : plus] → 1

...

scorew (x , y2) = w · φ(x , y2) = (0.1 ∗ 1.0) + (0.2 ∗ 1.0) + (0.0 ∗ 1.0)

35

Scoring Function

(Linear) Score Function

I Scorew (x,y) = w · φ(x , y) =
∑d

j=1 wjφ(x , y)

I weight vector w = [w1 = 0.1 w2 = 0.2 w3 = 0.0 ...]

I prediction: arg-maxy∈Y Scorew (x , y)

36

Objectives: What do we want to learn? (informal)

General Idea: want to learn a model (or weight vector) that can
distinguish correct and incorrect derivations.

y1 = N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

y2 = N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

φ(x,y1) =

R : mult [’times’] → 1

R : plus [’plus’] → 1

top [R : plus] → 1

...

φ(x,y2) =

R : plus [’times’] → 1

R : plus [’plus’] → 1

top [R : plus] → 1

...

37

Objectives: What do we want to learn? (informal)

General Idea: want to learn a model (or weight vector) that can
distinguish correct and incorrect derivations.

y1 = N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

N: (mult 2 (plus 2 3))

N : (plus 2 3)

N : 3

three

R: plus

plus

N : 2

two

R : mult

times

N : 2

two

φ(x,y1) =

R : mult [’times’] → 1

R : plus [’plus’] → 1

plus [R : mult] → 1

...

φ(x,y2) =

R : plus [’times’] → 1

R : plus [’plus’] → 1

mult [R : plus] → 1

...

38

Objectives: What do we want to learn? (formal)

I hinge loss: (learning from logical forms)

minw∈Rd

n∑
(x ,y)∈D

maxy ′∈Y [Scorew (x , y ′)+c(y , y ′)]−Scorew (x , y)

I (’two minus two times two’, s = (* (- 2 2) 2))

I In English: select parameters that minimize the cumulative
loss over the training data.

I Missing: A decoding algorithm for generating Y (not trivial,
Y might be very large).

39

Objectives: What do we want to learn? (formal)

I hinge loss: (learning from logical forms)

minw∈Rd

n∑
(x ,y)∈D

maxy ′∈Y [Scorew (x , y ′)+c(y , y ′)]−Scorew (x , y)

I (’two minus two times two’, s = (* (- 2 2) 2))

I In English: select parameters that minimize the cumulative
loss over the training data.

I Missing: A decoding algorithm for generating Y (not trivial,
Y might be very large).

39

Objectives: What do we want to learn? (formal)

I hinge loss: (learning from logical forms)

minw∈Rd

n∑
(x ,y)∈D

maxy ′∈Y [Scorew (x , y ′)+c(y , y ′)]−Scorew (x , y)

I (’two minus two times two’, s = (* (- 2 2) 2))

I In English: select parameters that minimize the cumulative
loss over the training data.

I Missing: A decoding algorithm for generating Y (not trivial,
Y might be very large).

39

Optimization: How do I achieve this objective?

I Stochastic gradient descent: An online learning and
optimization algorithm (more about this in future lectures).

40

Optimization: Illustration

41

Learning Model

I Components
I training data: D = {(xi , yi)|i ...n} X

I feature representation of data X
I scoring and objective function X
I optimization procedure X

I Important Ideas
I What kind of data do we learn from? (differs quite a bit)
I What kind of features do we need?

42

Learning Model

I Components
I training data: D = {(xi , yi)|i ...n} X
I feature representation of data X

I scoring and objective function X
I optimization procedure X

I Important Ideas
I What kind of data do we learn from? (differs quite a bit)
I What kind of features do we need?

42

Learning Model

I Components
I training data: D = {(xi , yi)|i ...n} X
I feature representation of data X
I scoring and objective function X

I optimization procedure X

I Important Ideas
I What kind of data do we learn from? (differs quite a bit)
I What kind of features do we need?

42

Learning Model

I Components
I training data: D = {(xi , yi)|i ...n} X
I feature representation of data X
I scoring and objective function X
I optimization procedure X

I Important Ideas
I What kind of data do we learn from? (differs quite a bit)
I What kind of features do we need?

42

Learning Model

I Components
I training data: D = {(xi , yi)|i ...n} X
I feature representation of data X
I scoring and objective function X
I optimization procedure X

I Important Ideas
I What kind of data do we learn from? (differs quite a bit)
I What kind of features do we need?

42

Experimentation and Evaluation

I Training Set: A portion of the data to train model on.

I Test Set: An unseen portion of the data to evaluate on.

I Dev Set : (optional) An unseen portion of the data for
analysis, tuning hyper parameters, ..

I Evaluation1: Given unseen examples, how often does my
model produce the correct output semantic representation?

I Evaluation2: Given unseen examples, how often does my
model produce the correct output answer?

43

Experimentation and Evaluation

I Training Set: A portion of the data to train model on.

I Test Set: An unseen portion of the data to evaluate on.

I Dev Set : (optional) An unseen portion of the data for
analysis, tuning hyper parameters, ..

I Evaluation1: Given unseen examples, how often does my
model produce the correct output semantic representation?

I Evaluation2: Given unseen examples, how often does my
model produce the correct output answer?

43

Conclusions and Take Aways

I Presented a simple model that mixes machine learning and
compositional semantics.

I Conceptually describes most of the work in this class.
I Technically describes many of the models we will use.

I Fundamental Problem: Which semantics representations
do we use, and what do we learn from?

I Question: Does this particular actually work?
I Yes! Liang et al. (2011) (lecture 5), Berant et al. (2013);

Berant and Liang (2014) (presentation papers)

44

Conclusions and Take Aways

I Presented a simple model that mixes machine learning and
compositional semantics.

I Conceptually describes most of the work in this class.
I Technically describes many of the models we will use.

I Fundamental Problem: Which semantics representations
do we use, and what do we learn from?

I Question: Does this particular actually work?

I Yes! Liang et al. (2011) (lecture 5), Berant et al. (2013);
Berant and Liang (2014) (presentation papers)

44

Conclusions and Take Aways

I Presented a simple model that mixes machine learning and
compositional semantics.

I Conceptually describes most of the work in this class.
I Technically describes many of the models we will use.

I Fundamental Problem: Which semantics representations
do we use, and what do we learn from?

I Question: Does this particular actually work?
I Yes! Liang et al. (2011) (lecture 5), Berant et al. (2013);

Berant and Liang (2014) (presentation papers)

44

Roadmap

I Lecture 2: rule extraction, decoding (parsing perspective)

I Lecture 3: rule extraction, decoding (MT perspective)

I Lecture 4: structured classification and prediction.

I Lecture 5: grounded learning (might skip).

45

References I

Berant, J., Chou, A., Frostig, R., and Liang, P. (2013). Semantic parsing on Freebase
from question-answer pairs. In in Proceedings of EMNLP-2013, pages 1533–1544.

Berant, J. and Liang, P. (2014). Semantic parsing via paraphrasing. In ACL (1), pages
1415–1425.

Domingos, P. (2012). A few useful things to know about machine learning.
Communications of the ACM, 55(10):78–87.

Liang, P., Jordan, M. I., and Klein, D. (2011). Learning dependency-based
compositional semantics. In Proceedings of ACL-11, pages 590–599.

Mooney, R. (2008). Learning to connect language and perception. In Proceedings of
AAAI-2008.

Turney, P. D., Pantel, P., et al. (2010). From frequency to meaning: Vector space
models of semantics. Journal of artificial intelligence research, 37(1):141–188.

Woods, W. A. (1973). Progress in natural language understanding: an application to
lunar geology. In Proceedings of the June 4-8, 1973, National Computer
Conference and Exposition, pages 441–450.

46

