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Plan

I main paper: Liang and Potts 2015 (conceptual basis of class)

I secondary: Mooney 2007 (semantic parsing big ideas),
Domingos 2012 (remarks about ML)
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Classical Semantics vs. Statistical Semantics (caricature)

I Logical Semantics: Logic, algebra, set theory
I compositional analysis, beyond words, inference, brittle.

I Statistical Semantics: Optimization, algorithms, geometry
I distributional analysis, word-based, grounded, shallow.

“The two types of approaches share the long-term vision of achieving

deep natural language understanding...”
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Montague-style Compositional Semantics

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: John studies.

john’ −→ “John”
(λx .(study’ x)) −→ “studies”

(λx .(study’ x))(john)→ (study’ john’)→ {True,False}

(λx .(study’ x))

studies

john’

John
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A mini functional interpreter (python)

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: John studies.

john’ −→ “John”
(λx .(study’ x)) −→ “studies”

>>> students studying = set([”john”, ”mary”])
>>> study = lambda x : x in students studying
>>> fun application = lambda fun, val : fun(val)

>>> fun application(study , ”bill”) ## What will we get?
>>> False
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Montague-style Compositional Semantics

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.

bill’ −→ “Bill”
(λx .(study’ x)) −→ “study”

(λf .λx .(not (f x))) −→ “does not”

(λx .(not (study’ x)))(bill)

(λx .(not (study’ x)))

(λx .(study’ x))

study

(λf .λx .(not (f x)))

does not

bill’

Bill
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A mini functional interpreter (python)

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.

bill’ −→ “Bill”
(λx .(study’ x)) −→ “study”

(λf .λx .(not (f x))) −→ “does not”

>>> students studying = set([”john”, ”mary”])
>>> study = lambda x : x in students studying
>>> fun application = lambda fun, val : fun(val)
>>> neg = lambda F : (lambda x : not F(x))

>>> neg(study)(”bill”) # True

>>> fun application(neg,study)(”bill”)
>>> fun application(fun application(neg,study),”bill”)
>>> neg(neg(sleep))(”bill”)
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Montague-style Compositional Semantics: What’s needed

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.

bill’ −→ “Bill”
(λx .(study’ x)) −→ “study”

(λf .λx .(not (f x))) −→ “does not”

I Grammar rules for building syntactic structure.

I Interpretation rules to composing meaning.

I Decoding algorithm for generating structures
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Montague-style Compositional Semantics: Issues

Principle of Compositionality: The meaning of a complex expression is

a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.

bill’ −→ “Bill”
(λx .(study’ x)) −→ “study”

(λf .λx .(not (f x))) −→ “does not”

Features and (Computational) Issues:

I compositional, provides a full analysis.

I supports further inferencing

I issue: Does not provide an analysis of words (not grounded).

I issue: Is brittle, cannot handle uncertainty.

I issue: Says nothing about how the translation to logic works.
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Statistical Approaches to Semantics

Statistical semantics hypothesis: “Statistical patterns of human
word usage can be used to figure out what people mean” Turney
et al. (2010)

corpus word-context matrix
The furry dog is walking outside... furry walking shiny driving

dog 10 20 0 0
cat 12 25 2 0
car 0 0 23 26
bike 0 1 30 25

The shiny car is driving...

A furry cat is walking around...

A shiny bike is driving....

....
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Statistical Approaches to Semantics

Statistical semantics hypothesis: “Statistical patterns of human
word usage can be used to figure out what people mean” Turney
et al. (2010)

corpus word-context matrix
furry walking shiny driving

dog 4 20 0 0
cat 3 25 2 0
car 0 0 5 26
bike 1 1 4 25
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Example Tasks and Applications: Turney et al. (2010)

Statistical semantic models are often used in downstream
classification or clustering tasks/applications.

I Term-document matrices
I Document retrieval/clustering/classification.
I Question Answering and Retrieval.
I Essay scoring.

I Word-Context Matrices
I Word similarity/clustering/classification
I Word-sense disambiguation
I Automatic thesaurus generation/paraphrasing

I Pair-pair matrices
I Relational similarity/clustering/classification.
I Analogy comparison.
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Statistical Approaches to Semantics

Statistical semantics hypothesis: “Statistical patterns of human
word usage can be used to figure out what people mean” Turney
et al. (2010)

corpus word-context matrix
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A furry cat is walking around...

A shiny bike is driving....

....

Features and Issues (caricature):
I Robust, requires little manual effort, grounded
I Can provide rich analysis of content words.

I issue: Hard to scale beyond words.
I issue: In general, hard to model logical operations, shallow.
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Mixing compositional and statistical semantics

Desiderata: Want a model of semantics that is robust, reflects
real-word usage and learnable, but one that is also compositional.

I Generalization
I Logical semantics: generalize using composition and

abstract recursive structures.
I Machine Learning (classification): learns generalizations

through real-world examples (e.g. target input-output)

I Bridge: get our learning to target compositional structures.
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A simple model: Liang and Potts

Model: a simple discriminative learning framework.

I compositional model: (semantic) context-free grammar.

I learning model: linear classification and first-order
optimization.
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Compositional Model:

Linguistic Objects: < u, s, d >

I u: utterance

I s: semantic representation (symbolized as ˆuˆ)

I d: denotation (symbolized as JsK)

Example: < ’seven minus five’, (- 7 5), 2 >
< ’two minus two times two’, (* (- 2 2) 2), 0 >

semantic parsing: u → s
interpretation: s → d
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Computational Modeling: The full picture

I Standard processing pipeline

input sem

List samples that contain
every major element

world

JsemK ={S10019,S10059,...}

Semantic Parsing

Interpretation

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /

SAMPLE : (CONTAINS Y X);

(PRINTOUT Y)))

Knowledge Representation

Lunar QA system (Woods (1973))
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Compositional Model: Context-free grammar

I provides the background grammar and interpretation rules
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Compositional Model: Context-free grammar

I provides the background grammar and interpretation rules

I example: u = two times two plus three

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

>>> plus = lambda x,y : x + y
>>> mult = lambda x,y : x * y
>>> plus(2,2) # 4
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Compositional Model: Components

I Components:
I Grammar rules for building syntactic structure. X

I Interpretation rules to composing meaning. X
I Decoding algorithm for generating structures × (later lecture)
I Rule extraction × (later lecture)

I Issues:
I example: u = two times two plus three

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two
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Compositional Model: Components

I Components:
I Grammar rules for building syntactic structure. X
I Interpretation rules to composing meaning. X
I Decoding algorithm for generating structures × (later lecture)

I Issues:
I example: u = two times two plus three

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

N: (mult 2 (plus 2 3))

N : (plus 2 3)

N : 3

three

R: plus

plus

N : 2

two

R : mult

times

N : 2

two
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Learning Model

I Goal: Helps us learn the correct derivations and handle
uncertainty (word mappings, composition).

I Classifier: “a system that inputs a vector of discrete and/or
continuous feature values and outputs a single discrete
value, the class.” Domingos (2012).

I Components
I training data D = {(xi , yi )|i ...n}
I feature representation of data
I scoring and objective function
I optimization procedure
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Training data

Goal: Find the correct derivations and output using our
compositional model

Logical forms (more information)

I (u = ’two minus two times two’, s = (* (- 2 2) 2))

Denotations (less information)

I (u = ’two minus two times two’, r = 0)

Weakly Supervised: In both cases, details are still hidden from
the learner.
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Learning from Semantic Representations

I example: ( two times two plus three,(plus (mult 2 2) 3))

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mul

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

I Trade off: More information (good) but more annotation (bad)
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Learning from Denotations

I example: ( two times two plus three,7)

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mul

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

I Trade off: Less annotation (good) but less information (maybe bad)
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Weak Supervision

Goal: Find the correct derivations and output using our
compositional model

Logical forms (more information)

I (u = ’two minus two times two’, s = (* (- 2 2) 2))

Denotations (less information)

I (u = ’two minus two times two’, r = 0)

“Current learning methods for NLP require annotating large corpora with supervisory

information ...[e.g. pos tags, syntactic parse trees, semantic role labels] ... Building

such corpora is an expensive, arduous task. As one moves towards deeper semantic

analysis the annotation task becomes increasingly more difficult and complex.”

Mooney (2008)
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Feature Representations: General Remark

“At the end of the day, some machine learning projects succeed and fail. What

makes the difference? Easily the most important factor is the features used.”

Domingos (2012)
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Feature selection and overfitting

”What if the knowledge and data we have are not sufficient to completely

determine the correct classifier? Then we run the risk of just hallucinating a

classifier (or parts of it) that is not grounded in reality .. This problem is called

overfitting.” Domingos (2012)

I Bias: Tendency to consistently learn the wrong thing.

I Variance: Tendency to learn random things irrespective of the real

signal.
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Good vs. Bad Feature Selection
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Feature Extraction Example

input: x = two times two plus three.

y1 = N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

y2 = N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

φ(x,y1) =

R : mult [ ’times’ ] → 1

R : plus [ ’plus’ ] → 1

top [ R : plus ] → 1

...

φ(x,y2) =

R : plus [ ’times’ ] → 1

R : plus [ ’plus’ ] → 1

top [ R : plus ] → 1

...
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Scoring Function

(Linear) Score Function

I Scorew (x,y) = w · φ(x , y) =
∑d

j=1 wjφ(x , y)

I weight vector w = [w1 = 0.1 w2 = 0.2 w3 = 0.0 ...]

φ(x,y2) =

w1 R : plus [ ’times’ ] → 1

w2 R : plus [ ’plus’ ] → 1

w3 top [ R : plus ] → 1

...

scorew (x , y2) = w · φ(x , y2) = (0.1 ∗ 1.0) + (0.2 ∗ 1.0) + (0.0 ∗ 1.0)
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Scoring Function

(Linear) Score Function

I Scorew (x,y) = w · φ(x , y) =
∑d

j=1 wjφ(x , y)

I weight vector w = [w1 = 0.1 w2 = 0.2 w3 = 0.0 ...]

I prediction: arg-maxy∈Y Scorew (x , y)
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Objectives: What do we want to learn? (informal)

General Idea: want to learn a model (or weight vector) that can
distinguish correct and incorrect derivations.

y1 = N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

y2 = N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

φ(x,y1) =

R : mult [ ’times’ ] → 1

R : plus [ ’plus’ ] → 1

top [ R : plus ] → 1

...

φ(x,y2) =

R : plus [ ’times’ ] → 1

R : plus [ ’plus’ ] → 1

top [ R : plus ] → 1

...
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Objectives: What do we want to learn? (informal)

General Idea: want to learn a model (or weight vector) that can
distinguish correct and incorrect derivations.

y1 = N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

N: (mult 2 (plus 2 3))

N : (plus 2 3)

N : 3

three

R: plus

plus

N : 2

two

R : mult

times

N : 2

two

φ(x,y1) =

R : mult [ ’times’ ] → 1

R : plus [ ’plus’ ] → 1

plus [ R : mult ] → 1

...

φ(x,y2) =

R : plus [ ’times’ ] → 1

R : plus [ ’plus’ ] → 1

mult [ R : plus ] → 1

...
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Objectives: What do we want to learn? (formal)

I hinge loss: (learning from logical forms)

minw∈Rd

n∑
(x ,y)∈D

maxy ′∈Y [Scorew (x , y ′)+c(y , y ′)]−Scorew (x , y)

I (’two minus two times two’, s = (* (- 2 2) 2))

I In English: select parameters that minimize the cumulative
loss over the training data.

I Missing: A decoding algorithm for generating Y (not trivial,
Y might be very large).
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Optimization: How do I achieve this objective?

I Stochastic gradient descent: An online learning and
optimization algorithm (more about this in future lectures).
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Optimization: Illustration
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Learning Model

I Components
I training data: D = {(xi , yi )|i ...n} X

I feature representation of data X
I scoring and objective function X
I optimization procedure X

I Important Ideas
I What kind of data do we learn from? (differs quite a bit)
I What kind of features do we need?
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Experimentation and Evaluation

I Training Set: A portion of the data to train model on.

I Test Set: An unseen portion of the data to evaluate on.

I Dev Set : (optional) An unseen portion of the data for
analysis, tuning hyper parameters, ..

I Evaluation1: Given unseen examples, how often does my
model produce the correct output semantic representation?

I Evaluation2: Given unseen examples, how often does my
model produce the correct output answer?
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Conclusions and Take Aways

I Presented a simple model that mixes machine learning and
compositional semantics.

I Conceptually describes most of the work in this class.
I Technically describes many of the models we will use.

I Fundamental Problem: Which semantics representations
do we use, and what do we learn from?

I Question: Does this particular actually work?
I Yes! Liang et al. (2011) (lecture 5), Berant et al. (2013);

Berant and Liang (2014) (presentation papers)
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Roadmap

I Lecture 2: rule extraction, decoding (parsing perspective)

I Lecture 3: rule extraction, decoding (MT perspective)

I Lecture 4: structured classification and prediction.

I Lecture 5: grounded learning (might skip).
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