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Lecture Plan

> Overview: Review of class topics and outstanding issues.

> General topics: Knowledge Representation, Learning from Entailment



The Big Picture (reminder)

» Standard processing pipeline

(FOR EVERY X /

. Semantic Parsing MAJORELT : T;
Input sem (FOR EVERY Y /

SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

List samples that contain
every major element Knowledge Representation

Reasoning

[sem] ={S10019,810059, ...}

Lunar QA system (Woods (1973))



Data-driven Semantic Parsing
> Goal: Given data, learn a function that can map any given input (x) to a

meaning representation (z).
> What kind of data do we learn from?

(input) x What state has the largest population? Supervision: Dataset D

Logical Forms: D = {(x;, z,-)}lN:1

Task: | latent) y, translation
sem ) z (argmax (Ax. (state x) Ax. (population x))) ask: leam (latent) ¥, ’

Zettlemoyer and Collins (2009)
Kwiatkowski et al. (2010)

Denotations: D = {(x;, [[Zj]])}l’\l:l

. . Task: learn z,y, program synthesis
(world) [ 2] California
Liang et al. (2013)
Berant et al. (2013)

Geoquery Corpus (Zelle and Mooney (1996))



Question Today

» How do these different subproblems interact?

- Semantic Parsing
Input sem

List samples that contain
every major element

Reasoning

(world)

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /
SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

Knowledge Representation

[sem] ={S10019,810059, ...}

Lunar QA system (Woods (1973))




Learning from Logical Forms: CCG Example

> Data: (Oklahoma borders Texas, borders’ (oklahoma’,texas’))

> Latent Variable: CCG derivations, Probability distribution over
derivations.

borders Texas

Oklahoma (S\NP) /NP : Ay, Ax.borders(x,y) NP : texas’

(>)

NP : oklahoma’ S\NP : Ax.borders(x, texas’)

(<)

S : borders(oklahoma’,texas’) v



Learning from Logical Forms: CCG Example
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borders Texas
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Learning from Logical Forms: CCG Example

> Data: (Oklahoma borders Texas, borders’ (oklahoma’,texas’))

> Latent Variable: CCG derivations, Probability distribution over

derivations.
borders Texas
Oklahoma NP : texas’ (S\NP)/NP : Ay, Ax.borders(x,y)
_ (<)
NP : oklahoma’ S\NP : Ax.borders(x, texas’)

(<)

S : borders(oklahoma’,texas’) Vv



Learning from Logical Forms: Compositional Model

borders Texas

Oklahoma (S\NP) /NP : Ay, Ax.borders(x,y) NP : texas’

>)

NP : oklahoma’ S\NP : Ax.borders(x, texas’)

(<)

S : borders(oklahoma’,texas’) V

Prelude > let borders ::([Char],[Char]) -> Bool;

Prelude | borders a = (elem a [("oklahoma","texas"), ...]1)
Prelude > borders ("nh","texas")

=> False



Learning from Logical Forms: Compositional Model

borders Texas

Oklahoma  (S\NP)/NP : Ay, Ax.borders(x,y) NP : texas’

(>)

NP : oklahoma’ S\NP : Ax.borders(x, texas’)

(<)

S : borders(oklahoma’,texas’) v

Prelude > :type borders
—=> borders :: ([Char], [Char]) -> Bool
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Learning from Logical Forms: Compositional Model

borders Texas

Oklahoma  (S\NP)/NP : Ay, Ax.borders(x,y) NP : texas’
(>)

NP : oklahoma’ S\NP : Ax.borders(x, texas’)

(<)

S : borders(oklahoma’,texas’) v

Prelude > :type borders

—=> borders :: ([Char], [Char]) -> Bool

Prelude > let borders_c = curry borders

Prelude > :type borders_c

=> borders_c :: [Char] -> [Char] -> Bool
semantic type: e —e —t

10



Lexical rule templates (Triggers)

Rules Categories produced from logical form
Input Trigger Output Category arg max(Az.state(z) A borders(z, tezas), Az.size(x))
constant ¢ NP:c NP :texas
arity one predicate p1 N : Az.pi(z) N : Az.state(x)
arity one predicate p; S\NP : Az.p, (=) S\NP : Ac.state(z)
arity two predicate py (S\NP)/NP : dz  y.pay, =) (S\NP)/NP : Az Ay.borders(y, z)
arity two predicate p2 (S\NP)/NP : Az \y.p2(2,y) (S\NP)/NP : Az.\y.borders(z, y)
arity one predicate p; N/N : g dz.pi(z) A g(z) N/N : Ag.Az.state(z) A g(z)
literal with arity two predicate
and constant ;Zmndlzz;ummtpc? N/N : Ag.Az.pa(z,c) A g(z) N/N : Ag.Az.borders(z, texas) A g(x)
arity two predicate pz (N\N)/NP: Az. A g.Ay.p2(z, y) A g(x) (N\N)/NP : Ag.dz.Ay.borders(z, y) A g(x)
an arg max / min with second . .
o e an{y e ot NP/N : Ag. arg max / min(g, Az. f(2)) NP/N : Ag. arg max(g, Az.size(z))
an arity one R R .
numeric-ranged function f S/NP:z.f(z) S/NP : Az.size(z)

» Templates: Extracting CCG entries from example logical forms, does not

work without target logical forms.

> Having logical forms keeps the space of rules/programs feasible.

11



Lexical rule templates (Triggers)

» Templates: Extracting CCG entries from example logical forms, does not

work without target logical forms.

> Having logical forms keeps the space of rules/programs feasible.

Ax.state(x) A borders(x, texas)

]
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Lexical rule templates (Triggers)

» Templates: Extracting CCG entries from example logical forms, does not

work without target logical forms.

> Having logical forms keeps the space of rules/programs feasible.

Ax.state(x) A borders(x, texas)

]

NP : texas
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Lexical rule templates (Triggers)

» Templates: Extracting CCG entries from example logical forms, does not

work without target logical forms.

> Having logical forms keeps the space of rules/programs feasible.

Ax.state(x) A borders(x, texas)

]

NP : texas
(S\NP) /NP : AyAx.borders(x,y)
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Lexical rule templates (Triggers)

» Templates: Extracting CCG entries from example logical forms, does not

work without target logical forms.

> Having logical forms keeps the space of rules/programs feasible.

Ax.state(x) A borders(x, texas)

]

NP : texas
(S\NP) /NP : AyAx.borders(x,y)
S\N : Ax.state(x)

12



Assumptions for CCG approach

> Logical Form: for each input, e.g.,

Ax.state(x) A borders(x, texas)

» Implementation: Programs that implement domain model.

» Seed Lexicon: Initial set of CCG lexical entries.

Texas = NP : texas

border := (S\NP) /NP : AyAx.borders(x, y)
states = S\N : Ax.state(x)
which = (S/(S\NP))/N : Af,Ag, Ax.f(x) A g(x)
Texas := (S/(S\NP))/N : Af,Ag, Ax.f(x) A g(x)
border = S\N : Ax.state(x)

13



Learning from Logical Forms: General Properties

> Goal: Learn to translate to logical forms using example sentences with
target logical representations.

» Critical: Having example logical forms limits the space of mappings and
translation rules.

> The types of models often used are indifferent to the types of

representations used.

14



Learning from Denotations

> Alternative approach to learning, only needs example input/output
(requires a background database of facts).

15



Learning from Denotations

> Alternative approach to learning, only needs example input/output
(requires a background database of facts).
> Logical forms: (two times two plus three, (plus (mult 2 2) 3))
> Denotations: (two times two plus three, 7)
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Learning from Denotations

> Alternative approach to learning, only needs example input/output
(requires a background database of facts).

> Logical forms: (two times two plus three, (plus (mult 2 2) 3))
> Denotations: (two times two plus three, 7)
> Difference: In the second case, the logical representation is a latent

variables (not only the translation), no program implementation.
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Learning from Denotations

> Alternative approach to learning, only needs example input/output
(requires a background database of facts).
> Logical forms: (two times two plus three, (plus (mult 2 2) 3))
> Denotations: (two times two plus three, 7)
> Difference: In the second case, the logical representation is a latent

variables (not only the translation), no program implementation.

N: (plus (mult 2 2) 3) N: (plus (plus 2 2) 3)
N : (mult 2 2) R : plus N : 3 N : (plus 2 2) R : plus N : 3
N:2 R:mil N:2 plus three N:2 R: plus N:2 plus three
two times two two times two

15



Learning from Denotations

> Alternative approach to learning, only needs example input/output
(requires a background database of facts).
> Logical forms: (two times two plus three, (plus (mult 2 2) 3))
> Denotations: (two times two plus three, 7)

> Why: Avoids annotation (practical/methodological), can we learn

programs from input/output? (scientific)

N: (plus (1{11}1‘0 2 2) 3) N: (plus (plus 2 2) 3)
N : (mu1t22) R : plusN 3 N : (plus 2 2) R : plus N : 3
— R /E T - /N
N:2 R:mul N:2 plus th‘ree N:2 R: plus N:2 pl‘us thl"ee
two times two two times two

16



Learning from Denotations (Liang et al. (2011))

» Computational Problem: Requires exploring an exponential space of

possible representations and programs:*

Input: What is the most populous city in California?

!

Ax.city(x)

!

Answer: Los Angeles

1 . N
Examples throughout adapted from Percy Liang's slides

17



Learning from Denotations (Liang et al. (2011))

» Computational Problem: Requires exploring an exponential space of

possible representations and programs:

Input: What is the most populous city in California?

!

Ax.city(x) A loc(x, CA)

!

Answer: Los Angeles
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Learning from Denotations (Liang et al. (2011))

» Computational Problem: Requires exploring an exponential space of

possible representations and programs:

Input: What is the most populous city in California?

!

Ax.state(x) A border(x, CA)

!

Answer: Los Angeles

19



Learning from Denotations (Liang et al. (2011))

» Computational Problem: Requires exploring an exponential space of

possible representations and programs:

Input: What is the most populous city in California?

!

argmax (A\x.city(x) A loc(x, CA), Ax.population(x)))

!

Answer: Los Angeles

20



Learning from Denotations (Liang et al. (2011))

» Computational Problem: Requires exploring an exponential space of

possible representations and programs:

Input: What is the most populous city in California?

!

... LF, LF, LF, LF, LF LF LF LF LF LF, LF, LF, LF, LF, LF, LF ...

!

Answer: Los Angeles

21



Why exponential?

> Geoquery: Answering questions about American geography.

» World: or domain of discourse is a database consisting of predicates.

22



Why exponential?

> Geoquery: Answering questions about American geography.

» World: or domain of discourse is a database consisting of predicates.

Input: A city located in California.

]

?

1

Answer: San Francisco

city loc
San Francisco Manhattan New York
Chicago San Francisco | California
New York Chicago Illinois
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Why exponential?

> Geoquery: Answering questions about American geography.

» World: or domain of discourse is a database consisting of predicates.

Input: A city located in California.

]

Ax.city(x)

1

Answer: San Francisco

loc

Manhattan New York

Chicago San Francisco | California

New York Chicago Illinois
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Why exponential?

> Geoquery: Answering questions about American geography.

> Simple case: only unary predicates. What is the search space?

Input: A city located in California.

!

Ax.city(x)

1

Answer: San Francisco

loc

Manhattan New York

Chicago San Francisco | California

New York Chicago Illinois

24



Why exponential?

> Geoquery: Answering questions about American geography.

» Disjunction: In this case, imposes constraint on equality.

Input: A city located in California.

]

Ax.city(x) A loc(x,California)

1

Answer: San Francisco

Manhattan New York

Chicago

New York Chicago Illinois

25



Why exponential?

> Geoquery: Answering questions about American geography.

> Next stage: Unary+Binary. What is the search space?.

Input: A city located in California.

!

Ax.city(x) A loc(x,California)

Answer: San Francisco

Manhattan New York

Chicago

New York Chicago Illinois

26



Why exponential?

> Geoquery: Answering questions about American geography.

» Unrestrained: What is the search space?.

Input: A city located in California.

!

Ax.city(x) A loc(x,California) A P1(x,Y) A P2(x,Y) A ...

1

Answer: San Francisco

Manhattan New York

Chicago

New York Chicago Illinois

27



Learning from Denotations and Knowledge Representation

» The search space for unrestricted lambda calculus logical forms is too
large to search.

28



Learning from Denotations and Knowledge Representation

» The search space for unrestricted lambda calculus logical forms is too
large to search.

» Consider set of predicates P ={loc,city, borders, ...} of size
n, the set of disjunctions is 2" (equal to the powerset of P)

250 = 1,125,899, 906, 842, 624

28



Learning from Denotations and Knowledge Representation

» The search space for unrestricted lambda calculus logical forms is too
large to search.

» Consider set of predicates P ={loc,city, borders, ...} of size
n, the set of disjunctions is 2" (equal to the powerset of P)

250 = 1,125,899, 906, 842, 624

» We cannot rely on example logical forms to constrain the space.

28



Learning from Denotations and Knowledge Representation

» The search space for unrestricted lambda calculus logical forms is too
large to search.

» Consider set of predicates P ={loc,city, borders, ...} of size
n, the set of disjunctions is 2" (equal to the powerset of P)

250 = 1,125,899, 906, 842, 624

» We cannot rely on example logical forms to constrain the space.

> Solution (Liang et al. (2011)): Develop a constrained version of lambda

calculus, simplifies representations, tree structured

28



DCS Language (Liang et al. (2011))

> Tree structured, nodes are predicates and edges are relations.

> Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation  Constraints World

city

1 San Francisco
! Chicago
Loy New York
2
1 e
loc

Manhattan New York

San Francisco | California

Chicago lllinois

CA

29



DCS Language (Liang et al. (2011))

> Tree structured, nodes are predicates and edges are relations.

> Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation  Constraints World
c € city city
1 | € loc San Francisco
' s€CA Chicago
- New York
2
1 e
loc

Manhattan New York

San Francisco | California

Chicago lllinois

CA

30



DCS Language (Liang et al. (2011))

> Tree structured, nodes are predicates and edges are relations.
> Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation  Constraints World
c € city city
1 | € loc San Francisco
! s€CA Chicago
- a="h New York
i h=s
loc

Manhattan New York

San Francisco | California

Chicago lllinois

CA



DCS Language (Liang et al. (2011))

> Tree structured, nodes are predicates and edges are relations.

> Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation  Constraints
c €city

| € loc

scCA

C1:/1

=

lo

a

h=s

e =N

32



DCS Language (Liang et al. (2011))

> Tree structured, nodes are predicates and edges are relations.

> Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation  Constraints
c €city

| € loc

scCA

C1:/1

=

lo

a

h=s

e =N

Expansion: Ac.3/.3s.city(c) Aloc(l,CA)ANCA(s)ANca=hAb =3

32



DCS Language: Another Join Example

N

> Defines a constraint satisfaction problem (CSP)

» Computing constraints can be done in linear time using dynamic

programming.

33



DCS Language: Another Join Example

%

1 1
1 \2
1 |
171
{ 1/ \1
| |
1 1

> Defines a constraint satisfaction problem (CSP)
» Computing constraints can be done in linear time using dynamic
programming.

> Tree structure: Keeps computation and search tractable, why?

33



DCS Language: Other Relations

> 5 other relations: aggregate, execute, extract, quantify, compare.

> Aggregate relation: captures higher-order phenomena that go beyond
basic CSPs.

number of average population of
magor cities major cities

Q)

1
|
2

average

7

()

Ot p-O

ot

1
1
1
1
|
1

city,
1
]
1
i
1
(a) Counting (b) Averaging

34



Comparison with Lambda Calculus (again)

Lambda Calculus

Formulae

Ax.city(x) A loc(x,CA)

Predicates

Ax.state(x)
Ax.Ay.borders(x, y)
Ap.Ax.p(x) A major(x)

Functions

Ag.argmax(g, Ax.size(x))

DCS

G

state
border

major

argmax

35



Instantiating Predicates and Generating Trees

CA
The most populous city in CA

» String Match: between words and predicate names.

36



Instantiating Predicates and Generating Trees

argmax CA

The most populous city in CA

> String Match: between words and predicate names.

» Function Words: small lexicon of function words.
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Instantiating Predicates and Generating Trees

city city
state state
argmax population population CA
The most populous city in CA

> String Match: between words and predicate names.
» Function Words: small lexicon of function words.

» Pos Tags: Find nouns and adjectives.

38



Instantiating Predicates and Generating Trees

city city
state state
argmax population population CA
The most populous city in CA

> String Match: between words and predicate names.
» Function Words: small lexicon of function words.
» Pos Tags: Find nouns and adjectives.

> k-best parsing: enumerate trees using k-best parser, update on good

trees using variant of EM (by now a typical approach)

38



Learning and Knowledge Representation

> Big lIdea: Learning puts certain constraints on knowledge representation.

» Theoretical Question: What representations are needed to make the
semantic learning problem tractable?
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Learning and Knowledge Representation

> Big lIdea: Learning puts certain constraints on knowledge representation.

» Theoretical Question: What representations are needed to make the
semantic learning problem tractable?

» Learning from Logical Form: Generally agnostic to such
questions, having target representations enforces constraints.

> Learning from Denotation: Is more sensitive to type of
knowledge representation, hard computational problem.
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Learning and Knowledge Representation

> Big lIdea: Learning puts certain constraints on knowledge representation.

» Theoretical Question: What representations are needed to make the
semantic learning problem tractable?

» Learning from Logical Form: Generally agnostic to such
questions, having target representations enforces constraints.

> Learning from Denotation: Is more sensitive to type of
knowledge representation, hard computational problem.

> Liang et al. (2011): Choose a simplified, more domain specific, version of

lambda calculus, reduce to constraint satisfaction problem.
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What about Reasoning?

» How do these different subproblems interact?

- Semantic Parsing
Input

List samples that contain
every major element

sem

Reasoning

(world)

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /
SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

Knowledge Representation

[sem] ={S10019,810059, ...}

Lunar QA system (Woods (1973))
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What about Reasoning?

» How do these different subproblems interact?

T Semantic Parsing
Input Qem

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /
SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

List all samples that contain
every major element

—

List some sample that contains
every major element

Reasoning

(world)

[sem] ={S10019,510059, ..

Knowledge Representation

.} D {S10019}

41




Recognizing Textual Entailment (RTE)

> Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

42



Recognizing Textual Entailment (RTE)

» Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: Norway's most famous painting, 'The Scream’ by Edward Munch, ....
Hypothesis: Edward Much painted 'The Scream’

True

42



Recognizing Textual Entailment (RTE)

» Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: Google files for its long awaited IPO
Hypothesis: Google goes public

True
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Recognizing Textual Entailment (RTE)

» Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: The president of Norway made an official visit to the United States
Hypothesis: Angela Merkel yesterday visited the United States.

False/Uncertain
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Recognizing Textual Entailment (RTE)

> Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: The president of Norway made an official visit to the United States
Hypothesis: Angela Merkel yesterday visited the United States.

False/Uncertain
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Recognizing Textual Entailment (RTE)

> Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: The president of Norway made an official visit to the United States

Hypothesis: Angela Merkel yesterday visited the United States.
False/Uncertain

» "The basic aim of semantics is to characterize the notions of a true

sentence .. and of entailment” Montague (1970)

45



Recognizing Textual Entailment (RTE)

> Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: The president of Norway made an official visit to the United States
Hypothesis: Angela Merkel yesterday visited the United States.

False/Uncertain

» "The basic aim of semantics is to characterize the notions of a true
sentence .. and of entailment” Montague (1970)

» A type of Turing test, minimal requirement for intelligence.

45



Learning to Sportscast
> Learning from “grounded” supervision.

» Minimal annotation effort.

(input)  x Pink3 quickly passes over to pink7
Supervision: Dataset D

y

Event Streams: D = {(x;, {z1, ...z })} 1,

GD z~ [[Z]] {PaSS( pink3 , pink .- } Task: learn (latent) y, translation
T Chen and Mooney (2008)
|

| world ] |IZ]]

Game Simulator

Sportscaster corpus (Chen and Mooney (2008))
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Requirements for Semantic Representations

» Minimal requirement: Semantic parser should be able to recognize

certain types of inferences.

Text Input Hypotheses Entailments
hy: pink3 kicks the ball Entail
input) t: Pink3 quickly kicks to Pink7 —) hy: pink3 blocks ball Contradict
h3: pink3 passes near midfield Unknown

Gm z: pass(pink3,pink7)

h
=h,
?hs
' world ’ |IZ]]

47



Learning from Entailment (Richardson and Kuhn (2016))

> Goal: Use textual entailment judgements as weak supervision to help
train a semantic parser.
> Learn more precise representations and domain knowledge, account for

inferential patterns.

Text Input Hypotheses Entailments
hy: pink3 kicks the ball Entail
input ) t: Pink3 qmckly kicks to Pink7 —) hy: pink3 blocks ball Contradict
hy: pink3 passes near midfield Unknown

Gm z: pass(pink3,pink7)

h;
=h,
?h;
' world ’ |IZ]]

48



Motivation: Crude Representations

> Target representations are not expressive, underspecified

> Not based on background logical theory (no knowledge)

Entailment
. t—h .
Text t Hypothesis h hest Naive (do reps match?)
Pink 3 quickly kicks  Pink 3 kicks over to
) . L Unknown .
1. to pink 1 pink 1 near midfield Entail
i . . . Unknown

pass (pink3,pink1) pass(pink3,pink1)

P.urple player 10 Purple 10 again Unknown .
2. kicks the ball shoots for the goal . Entail

. . Entail
kick(purplel0) kick(purple10)

» Desiderata: explicit treatment of modifiers

49



Motivation: Missing Knowledge

> Target representations are not expressive, underspecified.

> Not based on background logical theory (no knowledge)

Entailment
. t—h .
Text t Hypothesis h hest Naive (do reps match?)
Pink 10 kicks the ~ Fink 10 passesover .\ un
3 to pinkl . Contr.
ball kick(pink10) ) . Entail
pass(pink10,pink1)
. makes a scores Unknown
4. long kick another goal Contr.
. Unknown
kick(purple7) playmode (goal_1)

> Desiderata: explicit treatment of modifiers, sense distinctions, abstract

relations between symbols
50



Learning from Entailment

» Entailments are used to reason about target symbols and find holes in the

analyses.
input: (t,h)] t pink3 A passes to pinkl
. A/dc i : pink1/X ;
a H : : H
i pink3/pink3 i pass/kick i :
h pink3 quickly kicks A
A JC. pass C kick, pinkl T A
| >
pink3 = pink3 A I quickly passes to pinkl C kicks
y I >
pink3 = pink3 passes to pink 1 # quickly kicks
>
pink3 passes to pinkl # pink3 quickly kicks

@ z Uncertain

Data: D = {((t, h);,z)}Y,, Task: learn (latent) proof y
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Learning from Entailment

» Entailments are used to reason about target symbols and find holes in the

analyses.
input: (t,h)] t pink3 A passes to pinkl
; A/dc i ; pink1/X ;
a H : : H
i pink3/pink3 i pass/kick i :
h pink3 quickly kicks A
X JC. c , A
| >
pink3 = pink3 A I quickly C
y I >
pink3 = pink3 passes to pink 1 # quickly kicks
>
pink3 passes to pinkl # pink3 quickly kicks

@ z Uncertain

Data: D = {((t, h);,z)}Y,, Task: learn (latent) proof y
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Learning from Entailment

» Entailments are used to reason about target symbols and find holes in the

analyses.
input: (t,h)] t pink3 A passes to pinkl
; A/dc i ; pink1/X ;
a H : : H
i pink3/pink3 i pass/kick i :
h pink3 quickly kicks A
A D c ; A
| >
pink3 = pink3 A I quickly C
y I >
pink3 = pink3 passes to pink 1 # quickly kicks
>
pink3 passes to pinkl # pink3 quickly kicks

@ z Uncertain

Data: D = {((t, h);,z)}Y,, Task: learn (latent) proof y
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Learning from Entailment

» Entailments are used to reason about target symbols and find holes in the

analyses.
input: (t,h)] t pink3 A passes to pinkl
; A/dc i ; pink1/X ;
a H : : H
i pink3/pink3 i pass/kick i i
h pink3 quickly kicks A
A JC. pass C kick, pinkl C A
| >
pink3 = pink3 A I quickly passes to pinkl C kicks
y I >
pink3 = pink3 passes to pink 1 # quickly kicks
>
pink3 passes to pinkl # pink3 quickly kicks
sem z Uncertain

world

Data: D = {((t, h);,z)}Y,, Task: learn (latent) proof y
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Learning from Entailment

» Entailments are used to reason about target symbols and find holes in the

analyses.
input: (t,h)] t pink3 A passes to pinkl
; A/dc i ; pink1/X ;
a H : : H
i pink3/pink3 i pass/kick i i
h pink3 quickly kicks A
A JC. pass C kick, pinkl C A
| >
pink3 = pink3 A I quickly passes to pinkl C kicks
y I >
pink3 = pink3 passes to pink 1 # quickly kicks
>
pink3 passes to pinkl # pink3 quickly kicks
sem z Uncertain

world

Data: D = {((t, h);,z)}Y,, Task: learn (latent) proof y
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Learning from Entailment: Proofs

A dC. , pinkl C A
| >
pink3 = pink3 A I quickly passes to pinkl C kicks
| >
pink3 = pink3 passes to pink 1 # quickly kicks
I

pink3 passes to pinkl # pink3 quickly kicks

> Logical inference: requires logical inference, in this case using the
natural logic calculus (MacCartney and Manning (2009)).
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Learning from Entailment: Proofs

A JC, pass [ kick, pinklC A
| >
pink3 = pink3 A I quickly  passes to pinkl T kicks
| >
pink3 = pink3 passes to pink 1 # quickly kicks

I
pink3 passes to pinkl # pink3 quickly kicks

> Logical inference: requires logical inference, in this case using the
natural logic calculus (MacCartney and Manning (2009)).

> [. axioms, set-theoretic relations between symbols.

pass L kick

Q
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Learning from Entailment: Proofs

A JC. pass L kick, pinkl C A
| >
pink3 = pink3 A I quickly passes to pinkl C kicks
| >
pink3 = pink3 passes to pink 1 # quickly kicks

>
pink3 passes to pinkl # pink3 quickly kicks

> Logical inference: requires logical inference, in this case using the
natural logic calcluls (MacCartney and Manning (2009); lcard Il (2012)).

> [: axioms, set-theoretic relations between symbols.
> D natural logic join inference rule

CC=C
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Learning from Entailment: Proofs

A JC. pass C kick, pinkl C A
| >
pink3 = pink3 A I quickly passes to pinkl C kicks
| >
pink3 = pink3 passes to pink 1 # quickly kicks

>

pink3 passes to pinkl # pink3 quickly kicks

> Logical inference: requires logical inference, in this case using the

natural logic calcluls (MacCartney and Manning (2009); Icard 111 (2012)).

> [. axioms, set-theoretic relations between symbols.
> < natural logic inference rules, algebraic

> Latent variable: axioms or relations, inference rules are constant.
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Outline of Approach

> Step 1: Learn a base semantic parser on normal data (i.e. sentences —
logic) using a PCFG approach
> Step 2: Retrain on inference pairs using extended inference grammar

(i.e. sentences — logic, pairs — proofs).

» What's needed: inference dataset, logical calculus and learning

algorithm.
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Outline of Approach

> Step 1: Learn a base semantic parser on normal data (i.e. sentences —
logic) using a PCFG approach
> Step 2: Retrain on inference pairs using extended inference grammar

(i.e. sentences — logic, pairs — proofs).

» What's needed: inference dataset, logical calculus and learning

algorithm.

» For this talk, let's assume that we have already learned a semantic

grammar.
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Pairs to Proofs

» Going from pairs of text to proofs.

> two components: semantic relations, inference rules (joins and functions).

Transform t into h.

((t: purple? kicks the ball, h: purple team scores a goal), Uncertain)

. sub. sub.
transform. kick — score purple7 —— purple team
relation.
inference
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Pairs to Proofs

> Going from pairs of text to proofs.

> two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple? kicks the ball, h: purple team scores a goal), Uncertain)

. sub. sub.
transform. kick —— score purple?7 —— purple team

relation. ; E
symbol definition
[ xCy y
| xDy
= xX=y
| neg.
# other

inference
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Pairs to Proofs

» Going from pairs of text to proofs.

> two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple? kicks the ball, h: purple team scores a goal), Uncertain)

. b. b.
transform. kick 224 score purple? N purple team
relation. g
symbol definition
= xCy
= xDy
= xX=y
| neg.
# other
> Sl == #
== C |2 #
inference (O L) = #(Uncertain) 5 S %: g # i
\ o # L # | #
# # | # | # | # | #

()]
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Pairs to Proofs

» Going from pairs of text to proofs.

> two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple? kicks the ball, h: purple team scores a goal), Uncertain)

. b. b.
transform. kick 224 score purple? N purple team
relation. | |
symbol definition
= xCy Bg P
2 xDy 33 g 63
= X =Yy
| neg. pur?
# other

inference (D<) =3 (Uncertain)

H—ILIM X
S — LM 1
SN allnll
= — I3 ILIU

FH 3 Ik

kR R 3

[=))
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Pairs to Proofs

> Going from pairs of text to proofs.

> two components: semantic relations, inference rules (joins and
functions). Transform t into h.

((t: purple? scores a goal, h: purple7 kicks the ball), Entail)

b. o . b.
transform. score —s kick purple? = purple?
relation. C =

Q ||

N/

inference (Cx=) =L (Entail)

F=—IUFkRILIL

H=—IUIN X
HF—ILIr
S NTnllnlllnl

HH ¥
RiR iR B




Pairs to Proofs

> Going from pairs of text to proofs.

> two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple? scores a goal, h: purple7 kicks the ball again), Uncertain)

transform. score 25 kick A E%EC purple? LN purple?
relation. C | =

o

" modifier

[ )

)

Ead= #

inference (# < =) = #(Uncertain)

H=— L3R 10U

H=—ILIM X
S —ILIr
$ 3 3R IMIA)IN

RS

RERE S S i
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Pairs to Proofs

» Going from pairs of text to proofs.

> two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple? scores a goal again, h: purple7 kicks the ball), Entail)

b.. . . del. b.
transform. score =% kick L.~ \ purple? - purple7
relation. C =

" modifier

inference (Ex=) =L (Entail)

H—ILIM X
SE—ILrT
S Nnlinily
= — I3 ILIU

FH 33k
H 3k 3k 3R [




Pairs to Proofs

» Going from pairs of text to proofs.

» two components: semantic relations, inference rules (joins
and functions). Transform t into h.

((t: purple? scores a goal, h: purple7 kicks the ball), Entail)

transform.

relation.

inference

score 22 kick A\ L=, purple? LN purple7

C =

modifier

(Ex=) =L (Entail)

H—ILIM I X

S

F= 33RO

HH—IU3kILU

FH 33k

H 3k 3k 3R [
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Pairs to Proofs

> Going from pairs of text to proofs.

> two components: semantic relations, inference rules (joins and
functions). Transform t into h.

((t: purple? kicks, h: purple7 shoots for the goal), Uncertin)

sub.

transform. kick — kick-1 purple? by purple7

relation. | =

Q ||

N\

inference (d=) =1 (Uncertain)

F= 33RO

H—ILIM X

S — LTI

HH—IU3kILU

F 33k

H 3k 3k 3R 3R




Learning from Entailment: General Idea

» Generating proofs is done jointly with learning an ordinary semantic
parser, both help each other.

> Learning is done using a version of the EM algorithm.
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Learning from Entailment: General Idea

» Generating proofs is done jointly with learning an ordinary semantic
parser, both help each other.

> Learning is done using a version of the EM algorithm.

pink 3 kicks kick(pink3)
X y z
Parsing Model 6 Interpretation
@ Semantic/lnirence Grammar @ |— C':ntradict @
x = (t, h) y z
(pink 3 kicks,pink team kicks) Entail
. Co=play.intr= &

:alignment /\
: E playeryrg1 Splay— ‘ intr. judgement

pink3/pink team kick/kick

~
pink3/pink team kicks/kicks

pink 3/pink team  kicks/kicks
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Learned knowledge

> Learned lexical relations from example proof trees.

(1.‘7 h): (pink team is offsides,purple 9 passes) (bad pass.., loses the ball to)
| teamarg1 Eplay-tran
substitute ‘ substitute
pink team/purple9 bad pass/turnover
analysis: “pink team’/“purple 9" “bad pass .. picked off by” /“loses the ball to”
relation: pink team | purple9 bad pass C turnover
(1.'7 h): (free kick for, steals the ball from) (purple 6 kicks to,purple 6 kicks)
‘game—play ;play—tran.
substitute substitute
free kick/steal pass/kick
L “free kick for” / “steals the ball from” “kicks to" / “kicks'
analysis:
relation: free kick| steal pass C kick
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Learned knowledge

» Learned modifiers from example proof trees.

(t, h):

analysis:
generalization:

(t, h):

analysis:
generalization:

(a beautiful pass to,passes to)

Cc > =play-tran= Coplay-tran

™~

Ce =play-tran.

Cc /A pass/pass

“a beautiful” /A “pass to’/ “passes to”

beautiful(X) C X

(yet again passes to,kicks to)

e DX =play-tran. = Coplay-tran

=play-tran.

Cc /A pass/pass

“yet again” /A  “passes to” / “kicks to”

yet-again(X) C X

(gets a free kick,freekick from the)

=c =game-play

= /A freekick/freekick

“gets a" /A “free kick” / “freekick from the"

get(X) = X

(purple 10,purple 10 who is out front)

Splayeragz P = Dplayerargs

=playerag: e

purplel0/purplel0 A Ce

“purple 10" /“purple 10" A/"who is out front”

X  out_front(X)
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Conclusions

» Tried to fill in the gaps in this overall pipeline model

» While people have studied the different sub-problems independently of
one another, it's important to have a holistic view of the problem.

> We looked at issues related to knowledge representation and inference.
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Thank Youl
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