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Lecture Plan

» paper: Wong and Mooney (2006)

» general topics: Synchronous CFGs, Decoding by parsing,
word-alignment and rule extraction.



The Big Picture (reminder)

» Standard processing pipeline

(FOR EVERY X /

. Semantic Parsing MAJORELT : T;
Input sem (FOR EVERY Y /

SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

List samples that contain
every major element Knowledge Representation

Interpretation

[sem] ={S10019,510059, ...}

Lunar QA system (Woods (1973))



Semantic Parsing: Generating formal representations
» Data-driven: Given data, learn a function that can map any

given input (x) to a meaning representation (z).
» What kind of data do we learn from?

(input) x What state has the largest population?

sem ) z (argmax (Ax. (state x) (population x)))

(world)[[z] ~ California

Geoquery Corpus (Zelle and Mooney (1996))



Previously: Learning from meaning representations (again)

data: (x =two times two plus three,y = (plus (mult 2 2) 3))

» Compositional model : a semantic context-free grammar.
» Learning Model: Greedy string — tree rule induction (SILT)

» Other Topics
» Non-greedy parsing using (P)CFGs and dynamic programming,
the CKY algorithm.
» Maximum-Likelihood estimation, Expectation Maximization
and latent variables, inside-outside probabilities.



Previous Session: Transformation rules

» Decompose translation into a set of local transformations.

data: (X —two multiplied by two plus three,y = (plus (mult 2 2) 3))

(plus (mult 2 2) 3)

(mult 2 2) plus N:3

T | |

N: 2 mult | N:2 + 3
| | |
2 * 2

N 2 mult N2
2
rl: 2 r2: * ,rl: 'two' —




Bottom-up, String — Tree Rule Matching

RULE
CONDITION DIRECTIVE
bowner TEAM UNUM do TEAM UNUM ACTION

our 4 our 4 shoot

MR Grammar

RULE
CONDITION
DIRECTIVE
TEAM

UNUM
ACTION

LT

CONDITION DIRECTIVE
bowner TEAM UNUM

do TEAM UNUM ACTION
our

4

shoot

Transformation: |f TEAM player 4 has the ball, TEAM player 4 should shoot.

Input: If our player 4 has the ball, our player 4 should shoot.



Semantic Parsing and Machine Translation

» Conceptually: problem is treated as a kind of machine translation
problem.
» Dataset: D = {(x,yi)}/_1, X; sentence, y; (semantic)
translation.
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Semantic Parsing and Machine Translation

» Conceptually: problem is treated as a kind of machine translation
problem.

» Dataset: D = {(x,yi)}/_1, X; sentence, y; (semantic)
translation.

» Technically: transformation rules, common in MT.

» Idea: Recast the problem as a statistical MT task.
» Components:

» Synchronous grammar model
» Alignment-based rule extraction
» Probabilistic decoding and ranking model (more next lecture)



Context-Free Grammars (again)

» context-free grammar (CFG):

G=(X,N,5R)
» N : set of non-terminal symbols.
» ¥ : set terminal symbols.
» R:setofrules={N - a|ae(NUXD)*}
» S : start symbol

> Context-free language: defines a set of strings
» Derivation: A tree representation of rule application on input.

> Semantic Parsing: Semantic representations and composition rules take

the form of non-terminal rules in derivations.



Previous examples

» Derivation trees encode the semantic rules.

> example: u = two times two plus three

N: (plus (mult 2 2) 3)

T

N : (mult 2 2) R : plus N : 3

T | |

N:2 R :mult N:2 plus three

two times two

language G ={two times two, two times two plus three, ...}

10



Synchronous Context-Free Grammars (extension)

» synchronous context-free grammar (SCFG):

gSyn - (ze7 zf’ N7 57 R)

N : (shared) set of non-terminal symbols (as before).
> : english terminal symbols.

Y : foreign (or semantic) terminal symbols.

R : set of rules of the form:

vV vy vy

N = (o, B)

» ae(NUZX),Be(NUX
» S : start symbol: (51,52)

> SCF Language: defines a set of string pairs
> Allows us to more explicitly relate input and output.

11



Machine Translation Example

» Example: English — Japanese synchronous grammar.

> Notation: subscripts on each non-terminal N are used to relate rules on
each side. These rules must be paired in each rule. 1

S ——  (NPy VP, NP VP;)
VP — (Vi1 NPy, NP> Vi)
NP —  (l,watashi wa)

NP ——  (the box, hako wo)

V. ——  (open,akemasu)

lexample from Chiang and Knight (2006)

12



Machine Translation: Example Derivation

Grammar:
S — (NP1 VP, NPy VP)
VP — (V1 NPy, NP> V1)
NP — (I, watashi wa)
NP —  (the box, hako wo)
% —>  (open, akemasu)

13
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Derivation
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Machine Translation: Example Derivation

Grammar:
S — (NP1 VP, NPy VP)
VP — (V1 NPy, NP> V1)
NP — (I, watashi wa)
NP —  (the box, hako wo)
% —>  (open, akemasu)
Derivation
S (NP1 VP1p , NP1y, VP1o)

=
= (NP VisNPis , NP1y NP4 Vi3)
= <| Vi3NPia ,watashi wa NP4 V13>
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Machine Translation: Example Derivation

Grammar:
S — (NP1 VPy, NPy VPy)
VP — (V1 NPy, NP> V1)
NP — (I, watashi wa)
NP —  (the box, hako wo)
% —>  (open, akemasu)
Derivation
S = (NP1 VP12, NP1y, VP12)
= (NP VisNPis , NP1y NP4 Vi3)
= (I VisNP14 ,watashi wa NP4 Vis)
= (lopen NP4 ,watashi wa NP4 akemasu )

13



Machine Translation: Example Derivation

Grammar:
NP1 VP, NPy VP;)
Vi NPy, NPy Vi)

(
VP (
(I, watashi wa)
(
(

NP

NP the box, hako wo)

Ll

open, akemasu)

Derivation
S (NP1 VP12, NP1, VP1o)

(NP11 VisNP14 , NP1 NP4 Vi3)

(I VisNP14 , watashi wa NP4 Vi3)
(

(

lopen NP4, watashi wa NP4 akemasu )

R R

| open the box,watashi wa hako wo akemasu )

13



SCFGs

> SCFG language: defines a set of sentence pairs

G = {(I open the box, watashi wa hako wo akemasu), ...}

> derivation: a pair of trees.

S S
/\ A
NP VP ) NP VP
N | N
| 4 NP watashi wa NP VP
| | |
op‘en the box hako wo akemasu

14



Two Variants of Parsing

> Parsing pairs: Given an english text and foreign text, generate a
synchronous derivation using a grammar G>" (bitext parsing)

(I open the box, watashi wa hako wo akemasu) — derivation

> Translation or Decoding: Given an english text, translate it into a
foreign text using a grammar G>"

| open the box — watashi wa hako wo akemasu
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Two Variants of Parsing

> Parsing pairs: Given an english text and foreign text, generate a
synchronous derivation using a grammar G>" (bitext parsing)

(I open the box, watashi wa hako wo akemasu) — derivation

> Translation or Decoding: Given an english text, translate it into a
foreign text using a grammar G>"

| open the box — watashi wa hako wo akemasu

> Surprisingly: The first problem is much harder than the second (despite

more information). We will only consider the second.

15



Decoding by parsing (i.e., Translation)

> Assuming we have binary rules, we can use the CKY algorithm (last
lecture) for parsing.

> ldea: Parse the english side of the grammar in the normal way, then
apply or project foreign side of rules.

» Why does this work? Synchronous rules have the same LHSs.

16



Decoding by Parsing: Parse English Side

Grammar:

o | 1 open , the box 3

—r , NP1 VPy)
—r , NP> V1)
— (I, watashi wa)
—r , hako wo)
—  ( , akemasu)
1 2

0

1

2

17



Decoding by Parsing: Parse English Side

Grammar:
S — NPy VPs, NPy VP)
VP — (Vi NP>, NPy V4)
NP — (I, watashi wa)
NP —  (the box, hako wo)
%4 —  (open, akemasu)

2 3

o | 1 open 5 the box 3

N| = O
—_

18



Decoding by Parsing: Parse English Side

Grammar:

S — (NP, VP, NPy VP,)

vP — (Vi NPs, NPy Vi)

NP — (I, watashi wa)

NP —  (the box, hako wo)

%4 —  (open, akemasu)

1 2 3
0
o | 1 open 5 the box 3 1

2

19



Decoding by Parsing: Parse English Side

Grammar:
S — (NP, VP, NPy VP,)
vP — (Vi NPs, NPy Vi)
NP — (I, watashi wa)
NP —  (the box, hako wo)
%4 —  (open, akemasu)
1 2
0
o | 1 open 5 the box 3 1
2

,/20\,



Decoding by Parsing: Parse English Side

Grammar:
S —> (NP VP, NPy VPy)
VP — (Vi NP2, NPy V1)
NP — (I, watashi wa)
NP —  (the box, hako wo)
%4 —  (open, akemasu)
1 2 3
0
o | 1 open 5 the box 3 1
2
o = = = = 9ac



Decoding by Parsing: Parse English Side

Grammar:
S —> (NP VP, NPy VPy)
VP — (Vi NP2, NPy V1)
NP — (I, watashi wa)
NP —  (the box, hako wo)
%4 —  (open, akemasu)
1 2 3
0
o | 1 open 5 the box 3 1
2
o = = = = 9ac



Decoding by Parsing: Projection

Grammar:
S —> (NP1 VP>, NPy VPy)
VP —> (Vi NP>, NPy Vi)
NP — (I, watashi wa)
NP —>  (the box, hako wo)
v —  (open, akemasu)
1 2
0
o | 1 open 5 the box 3 1
2




Binarization (brief reminder/review)

> CKY algorithm (last week) assumes input grammar is in Chomsky

normal-form (binary rules and unary pre-terminal rules only).

> Why? input: wiwawswy
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Binarization (brief reminder/review)

> CKY algorithm (last week) assumes input grammar is in Chomsky
normal-form (binary rules and unary pre-terminal rules only).

> Why? input: wiwawswy

binary (one split)  binary+ternary (two splits)

(w1, wo) (w1, wo)

(w2, ws) (w2, ws)

(ws, wa) (ws, wa)
(w1, wows) (w1, wows)
(wiwa, ws) (wiwa, ws)
(W2W3,W4) (W2W3,W4)

(w1, wo, wa)

(wiwz, w3, wa)

24



Binarization (brief reminder/review)

> CKY algorithm (last week) assumes input grammar is in Chomsky
normal-form (binary rules and unary pre-terminal rules only).

> Why? input: wiwawswy

binary (one split)  binary+ternary (two splits)

(w1, wo) (w1, wo)

(w2, ws) (w2, ws)

(ws, wa) (ws, wa)
(w1, waws) (w1, waws)
(wiwa, ws) (wiwa, ws)
(W2W3,W4) (W2W3,W4)

(w1, wo, wa)

(W1W2', ws, W4)

» Problem: Unlike normal CFGs, SCFGs cannot be binarized in the

general case.



History: Syntax-Directed Translation

> First developed as a method for programming language compilation (i.e.

translating high-level languages to lower-level languages)

move ax, 1
for i in range(10): loop: add bx,ax
n+=i ! cmp ax, 10
jle loop

» Analogy: We can think of semantic parsing as a form of language compilation.

25



Big Idea: Wong and Mooney (2006)

> Transformation Rules: recast the string-to-tree rewrite rules (last class,

Kate et al. (2005)) as synchronous grammars rules.

> Rule Extraction: SCFGs are extracted using a word alignment model
(as done in other approaches to MT)

26



Semantic Parsing and Syntax-driven Translation

Grammar:
RULE — (if CONDITION; DIRECTIVEp, ( CONDITION; DIRECTIVE; ))
CONDITION ——>  (TEAM; player UNUM; has the ball , (bowner TEAM; {UNUM}, ))
TEAM —  (our, our)
UNUM —  (four, 4)

27



Semantic Parsing and Syntax-driven Translation

Grammar:
RULE
CONDITION
TEAM
UNUM

Deriv.

RULE =

— (if CONDITION; DIRECTIVEp, ( CONDITION; DIRECTIVE; ))
—>  (TEAM; player UNUM; has the ball , (bowner TEAM; {UNUM}, ))
—  (our, our)

—  (four, 4)

(if CONDITION; DIRECTIVE;, ( CONDITION;,DIRECTIVE, ))

27



Semantic Parsing and Syntax-driven Translation

Grammar:
RULE — (if CONDITION; DIRECTIVEp, ( CONDITION; DIRECTIVE; ))
CONDITION ——>  (TEAM; player UNUM; has the ball , (bowner TEAM; {UNUM}, ))
TEAM —  (our, our)
UNUM —  (four, 4)
Deriv.

RULE =  (if CONDITION; DIRECTIVE, , ( CONDITION;,DIRECTIVE, ))
=>  (if TEAM; player UNUM; has the ballDIR.;, ((bowler TEAM; {UNUM>},DIR; ))
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Semantic Parsing and Syntax-driven Translation

Grammar:
RULE — (if CONDITION; DIRECTIVEp, ( CONDITION; DIRECTIVE; ))
CONDITION ——>  (TEAM; player UNUM; has the ball , (bowner TEAM; {UNUM}, ))
TEAM —  (our, our)
UNUM —  (four, 4)
Deriv.

RULE =  (if CONDITION; DIRECTIVE, , ( CONDITION;,DIRECTIVE, ))
=>  (if TEAM; player UNUM; has the ballDIR.;, ((bowler TEAM; {UNUM>},DIR; ))
= (if our player UNUM; has the ballDIR.,, ((bowler our {UNUM,},DIR; ))

27



Semantic Parsing and Syntax-driven Translation

Grammar:
RULE — (if CONDITION; DIRECTIVEp, ( CONDITION; DIRECTIVE; ))
CONDITION ——>  (TEAM; player UNUM; has the ball , (bowner TEAM; {UNUM}, ))
TEAM —  (our, our)
UNUM —  (four, 4)
Deriv.
RULE = (if CONDITION; DIRECTIVE,, ( CONDITION;, DIRECTIVEp )>
=>  (if TEAM; player UNUM; has the ballDIR.;, ((bowler TEAM; {UNUM>},DIR; ))
= (if our player UNUM; has the ballDIR.,, ((bowler our {UNUM,},DIR; ))

= < If our player four has the ball, then our player six ... ,

((bowner our {4})(do our {6} (pos (left (half our))))) )
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Semantic Parsing and Syntax-driven Translation

Grammar:
RULE — (if CONDITION; DIRECTIVEp, ( CONDITION; DIRECTIVE; ))
CONDITION ——>  (TEAM; player UNUM; has the ball , (bowner TEAM; {UNUM}, ))
TEAM —  (our, our)
UNUM —  (four, 4)
Deriv.
RULE = (if CONDITION; DIRECTIVE,, ( CONDITION;, DIRECTIVEp )>
=>  (if TEAM; player UNUM; has the ballDIR.;, ((bowler TEAM; {UNUM>},DIR; ))
= (if our player UNUM; has the ballDIR.,, ((bowler our {UNUM,},DIR; ))

= < If our player four has the ball, then our player six ... ,

((bowner our {4})(do our {6} (pos (left (half our))))) )

» s this grammar in CNF?

27



Rule Extraction and Alignment

» Lexical Acquisition: finding optimal word alignments between NL
sentences and meaning representation (MR) fragments.
> Assumes (as in Kate et al. (2005)) a deterministic MR grammar.

» For alignment, MR is represented as a sequence of productions.
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Rule Extraction and Alignment

» Lexical Acquisition: finding optimal word alignments between NL
sentences and meaning representation (MR) fragments.

> Assumes (as in Kate et al. (2005)) a deterministic MR grammar.

» For alignment, MR is represented as a sequence of productions.

¥ \

our RULE — (CONDITION DIRECTIVE)
51“3’” CONDITION — (bowner TEAM {UNUM})
has TEAM — our

the - UNUM — 4

ball

28



Word-based alignment models (basics)

> Basic idea: Treat translation as a process of translating individual words?

Das Haus ist klein

the house is small

> Alignment function: a : i — j, (i english word to j foreign word)

a: {1-1,2—23—>34—4}

2E><amp|es from Koehn (2009) and some of his slides.

29



Word-based alignment models (basics)

> Basic idea: Treat translation as a process of translating individual words>

Das Haus ist klitzeklein

N

the house s very small

> Alignment function: a : i — j, (i english word to j foreign word)

a: {1—51,2-523-34-454}

» One-to-many: foreign might translate to multiple english words.

3E><amp|es from Koehn (2009)

30



Word-based alignment models (basics)

> Basic idea: Treat translation as a process of translating individual words*

NULL Das Haus ist klein

the house is just small
> Alignment function: a : i — j, (i english word to j foreign word)

a: {1-1,2—-23—-34—-0,5—4}

> Null translation: english words might not have foreign
translations.

4E><amp|es from Koehn (2009)

31



Word-based alignment models (basics)

> Translation probability: defined as t(e; | fj), or probability of english
word e; given a foreign word f;, s.t.

> tle|f)=10

e

32



Word-based alignment models (basics)

> Translation probability: defined as t(e; | fj), or probability of english
word e; given a foreign word f;, s.t.

> tle|f)=10

e

0.5 e =small

0.2 e=tiny
t(. | klein) = ¢ 0.2 e =little
0.05 e =the

0.05 e = house

32



IBM Model 1

> IBM Model 1: Based entirely on translation (or lexical) probabilities
(Brown et al. (1993)).

> english sentence: e, .., ¢,

> foreign sentence: fi,..,f,

33



IBM Model 1

> IBM Model 1: Based entirely on translation (or lexical) probabilities
(Brown et al. (1993)).

> english sentence: e, .., ¢,
> foreign sentence: fi,..,f,

» Translation probability with alignment:

1
ple.al N =gy Ht(ejlfao

> (Ir 4 1)’ the number of total alignments (assuming Null word).

33



IBM Model 1

> Translation probability with alignment:

[/
) .
ple;a| f)=——[]tle | fp)
U+ 1) 33

Das Haus ist klein

the house is small

> a: {1 — lt(the\Das):OJy 2= 2t(house\Haus):O.8, 3= 3.4.04874 — 44.40.4}

1
ple,alf)= i * 0.7 0.8 % 0.8 % 0.4 = 0.0029

34



IBM Model 1

> Translation probability with alignment:

le
1
p(e.a|f)= U+ 1) H t(e | )
j=1

> (Overall) Translation probability:

ple| f)=2_plealf)

a

35



IBM Model 1

> Translation probability with alignment:

le
1
p(e.a|f)= U+ 1) Ht(ej | faiy)
j=1

> (Overall) Translation probability:

ple| f)=2_plealf)

a
> Problem: Requires summing over all alignments

» e.g., lo = Ir = 10 this equals (10 + 1)!° = 25 937,424,601
alignments (Penn treebank, aver. somewhere near 27 words).

35



IBM Model 1

> Luckily, we can get around this (using some basic math).

> (Overall) Translation probability:

ple | f) :Zp(eya | )

Z Z (e,a] f)

):0 (/e) 0

I le
e z > Tltte o)
a(1)= a(le)=0 j=1
le If
lf+1 H;t(@“r

Z: Z ﬁnt( [ f0)

36



IBM Model 1

> Luckily, we can get around this (using some basic math).

> (Overall) Translation probability:

p(e| f)= Zpea\f
le Ie

/f_i_l)/e HZ & | )

j=1 i=0

> e = my friend, f = mein freund (without Null)

p(my friend | mein freund) = ((t(my | mein)+t(my | freund))« (t(friend | mein)+ t(friend | freund)))/2

2

37



Learning a Modell aligner

> Requires learning translation probabilities t(e; | f)
> Maximum Likelihood Estimation (MLE) (with full information)

count(ei, f;)

ten ) = S~ count(e, £)
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> Expecation Maximization (EM):
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Learning a Modell aligner

> Requires learning translation probabilities t(e; | f)
> Maximum Likelihood Estimation (MLE) (with full information)

count(ei, f;)
tle,f) = =——— "~
() = 5 count(e, 1)

> Problem: We don't have full information (i.e, target alignments)
> Expecation Maximization (EM):

> Initialize parameters randomly (or uniformly)
> e-step: Run the current model on your data, collect counts.
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Learning a Modell aligner

> Requires learning translation probabilities t(e; | f;)
> Maximum Likelihood Estimation (MLE) (with full information)

count(ei, f;)
tle,f) = =——— "~
() = 5 count(e, 1)

> Problem: We don't have full information (i.e, target alignments)
> Expecation Maximization (EM):

> Initialize parameters randomly (or uniformly)
> e-step: Run the current model on your data, collect counts.
» m-step: Update parameters based on previous step.
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Learning a Modell aligner

> Requires learning translation probabilities t(e; | f;)
> Maximum Likelihood Estimation (MLE) (with full information)

count(ei, f;)
i7f' =
1) = 5 count(e, £)

> Problem: We don't have full information (i.e, target alignments)
> Expecation Maximization (EM):

> Initialize parameters randomly (or uniformly)

> e-step: Run the current model on your data, collect counts.

» m-step: Update parameters based on previous step.
> Repeat last two steps until convergence.
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EM for IBM Modell

Input: set of sentence pairs (e, f) 14: // collect counts

Qutput: translation prob. t(e\ f) 15: for all words e in e do

1: initialize t(e\f) uniformly 16: for all words f in f do
2: while not converged do 17+ count(e\f) += #‘:’l(e)
3: // initialize 18: total (f) += sfttoetal(a)
4: count(e\f) = 0 for all e, f 19: end for

5: total(f) = 0 for all f 20: end for

6: for all sentence pairs (e,f) do 21: end for

Tz // compute normalization 22: // estimate probabilities

8: for all words e in e do 23: for all foreign words f do
9: s-total(e) = 0 24: for all English words e do
10: for all words £ in £ do 25: tle|f) = Smtio)

11: s-total(e) += t(elf) 26: end for

12: end for 27: end for

13: end for 28: end while

Koehn (2009)



Modell as a Translation Model

» Word decoding : Modell can be used as translation model.

ple| f)=2_plealf)

a

» Nowadays, such models are used for extracting alignments, which are the

basis of more complex translation models (e.g. our syntax-based model).

> Viterbi alignment: Find the most likely alignment given a pair (easy,
find for each word e; the most likely ;)

aj = arg maxje{o‘../f}t(ei | ;)

» K-best alignments: Can be extended to extract top k alignments.

40



Other IBM Models

> IBM Models 2-5: Go beyond using only the lexical translation
probabilities.

thel man wearing the2 coat

the person with the jacket

41



Other IBM Models

> IBM Models 2-5: Go beyond using only the lexical translation
probabilities.

thel man wearing the2 coat

the person with the jacket

> IBM Model2: adds an alignment probability distribution: a(i | j, le, If),
which considers relative word position and sentence length:

le

(e;a[f) H & | fagy)a(ali) 1, les Ir)

41



Other IBM Models

> IBM Models 2-5: Go beyond using only the lexical translation
probabilities.

thel man wearing the2 coat

the person with the jacket

> IBM Model2: adds an alignment probability distribution: a(i | j, le, If),
which considers relative word position and sentence length:

le

(e;a[f) H & | fagy)a(ali) 1, les Ir)

> Modell: t(e | i) =t(es | fa)
> Model2: t(e | fi)a(1]4,5,5) < t(es| fa)a(4|4,5,5)
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Other IBM Models

> Modell: lexical translation probabilities, bag-of-words.

> Model2: alignment probability distribution: a(i | j, l, If)

> Model3: fertility distribution n(¢ | f), or distribution over the number
of words each f; usually translates to.

n(1 | haus) = 1.0, n(2 | klitzeklein) = 1.0, ...

> Model4: relative distortion, word classes.

> Model5: fixes deficiency problem.
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Back to Semantic Parsing: Rule extraction (wong and Mooney

(2006))

» Extraction: Train IBM Model5 over english sentences and sequences of
MR productions, and extract rules from 10-best alignment.

» Important: productions are used instead of MR tokens, allows for
skipping pieces without meaning.
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Back to Semantic Parsing: Rule extraction (wong and Mooney

(2006))

» Extraction: Train IBM Model5 over english sentences and sequences of
MR productions, and extract rules from 10-best alignment.

» Important: productions are used instead of MR tokens, allows for
skipping pieces without meaning.

If T
our RULE — (CONDITION DIRECTIVE)

51“5’ er CONDITION — (bowner TEAM {UNUM})
has TEAM — our

the —— UNUM — 4

ball
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Rule extraction (Wong and Mooney (2006))

> Extraction: Bottom-up (as done last week), starting from alignments

with terminal symbols, then working to more complex rules.

If T

our RULE — (CONDITION DIRECTIVE)
51@’” CONDITION — (bowner TEAM {UNUM})
has TEAM — our

the — UNUM — 4

ball

> alignment where RHS of production rule is a MR terminal:

» TEAM — (our,our), UNUM — (4,4),

a4



Rule extraction (Wong and Mooney (2006))

> Extraction: Bottom-up (as done last week), starting from alignments

with terminal symbols, then working to more complex rules.

¥ __\\55\55\5\“~\~\__

our RULE — (CONDITION DIRECTIVE)
51‘”’” CONDITION — (bowner TEAM {UNUM})
has TEAM — our

the — UNUM — 4

ball

> alignment where RHS of production rule is a MR terminal:
» TEAM — (our,our), UNUM — (4,4),
> Move to more complex rules (adjust to account for sub patterns, skip
words by writing (num)):

» COND. —
(TEAM; player UNUMzhas (1) ball, (bowner TEAM; { UNUM, } ))
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Similar methods: Hiero rule extraction

> Specialized version of methods used for other types of syntax-based
decoding, e.g., hierarchical phrase-based translation (Chiang (2005))

» Does not require syntactic rules or analyses, learns them from
scratch.

30Wai de youhao hezuo
>
x/\’
//

friendly cooperation over  the last ~ 30 years
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Similar methods: Hiero rule extraction

> Specialized version of methods used for other types of syntax-based
decoding, e.g., hierarchical phrase-based translation (Chiang (2005))
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>
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Similar methods: Hiero rule extraction

> Specialized version of methods used for other types of syntax-based
decoding, e.g., hierarchical phrase-based translation (Chiang (2005))

» Does not require syntactic rules or analyses, learns them from

scratch.
30Wai de youhao hezuo
_—
X%/\/
///
friendly cooperation over  the last ~ 30 years
X — (30, 30)

X, — (friendly cooperation, youhao hezuo)

Xz — (over the last Xi years , X; duonianlai)
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Similar methods: Hiero rule extraction

> Specialized version of methods used for other types of syntax-based
decoding, e.g., hierarchical phrase-based translation (Chiang (2005))

» Does not require syntactic rules or analyses, learns them from

scratch.
30Wai de youhao hezuo
_—
X%/\/
///
friendly cooperation over  the last ~ 30 years
X — (30, 30)

X, — (friendly cooperation, youhao hezuo)
Xz — (over the last Xi years , X; duonianlai)
X4 — <X2X3, X3X2>

45



Extension to logical variables

» So far, has been used on functional representations.

> \-Wasp (Wong and Mooney (2007)) extends rules extraction to handle
logical and lambda variables, of the type:

A = (o, Ax1, .oy XX 3)

form. — smallest(xp,(form.,form.)) form. — state(x;) form. — area(xy,x2)

smallest state by area

46



Extension to logical variables

» So far, has been used on functional representations.

> \-Wasp (Wong and Mooney (2007)) extends rules extraction to handle
logical and lambda variables, of the type:

A = (o, Ax1, .oy XX 3)

form. — smallest(xp,(form.,form.)) form. — state(x;) form. — area(xy,x2)
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Extension to logical variables

» So far, has been used on functional representations.

> \-Wasp (Wong and Mooney (2007)) extends rules extraction to handle
logical and lambda variables, of the type:

A = (o, Ax1, .oy XX 3)

form. — smallest(xp,(form.,form.)) form. — state(x;) form. — area(xy,x2)

smallest state by area

form — (state, Axi. state(x))
form — (by area, Axi.Ay». area(x, y))
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Extension to logical variables

» So far, has been used on functional representations.

> \-Wasp (Wong and Mooney (2007)) extends rules extraction to handle
logical and lambda variables, of the type:

A = (o, Ax1, .oy XX 3)
form. — smallest(xp,(form.,form.)) form. — state(x;) form. — area(xj,xp)
smallest state by area

form — (state, Axi. state(x))
form — (by area, Axi.Ay». area(x, y))

form — (smallest form; formo, Axi.smallest(xz, (formi(x1), forma(xi, x2))))
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Probabilistic Model

> Lexical/rule induction: Over-generates, leading to many derivations.

> Extend the SCFG to a weighted SCFG (the synchronous analogue of the
PCFG), which defines a probability distribution over derivations.

» Goal is to discriminative different derivations, and find an output
translation f* where

f* = m(arg maxdeD(Gle)Pb\(d | €))
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Probabilistic Model

> Lexical/rule induction: Over-generates, leading to many derivations.

> Extend the SCFG to a weighted SCFG (the synchronous analogue of the
PCFG), which defines a probability distribution over derivations.

» Goal is to discriminative different derivations, and find an output
translation f* where

f* = m(arg maxdeD(Gle)Pb\(d | €))

> D(G | e): The set of derivations given an english input e.
» Computed using dynamic-programming and something close to the
inside-outside algorithm (last week)
> Pry(d | e): Training a log-linear model on example derivations (more on

this next week).
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Overview and Take-aways

> Recasting the semantic parsing problem as an MT task.
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Overview and Take-aways

> Recasting the semantic parsing problem as an MT task.
» Synchronous grammars: modeling NL-MR transformations and
decoding by parsing.
» Word-Alignment Models: Basics, extracting semantic grammar
transformation rules
> Decoding and ranking models: Skipped over important details,
more about this next week
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Overview and Take-aways

> Recasting the semantic parsing problem as an MT task.
» Synchronous grammars: modeling NL-MR transformations and
decoding by parsing.
» Word-Alignment Models: Basics, extracting semantic grammar
transformation rules
> Decoding and ranking models: Skipped over important details,
more about this next week
» Further directions
> Different tree-based translation models (Ehsen), more powerful
translation models (Mariia)
» Different rule extraction techniques: Li et al. (2013)
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Roadmap

> Lecture 3 (today): rule extraction, decoding (MT perspective)

> Lecture 4: Structure prediction and classification (missing today).
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