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Plan

» main paper: Liang and Potts 2015 (conceptual basis of class)

» secondary: Mooney 2007 (semantic parsing big ideas),
Domingos 2012 (remarks about ML)



Classical Semantics vs. Statistical Semantics (caricature)

» Logical Semantics: Logic, algebra, set theory
» compositional analysis, beyond words, inference, brittle.

» Statistical Semantics: Optimization, algorithms, geometry
» distributional analysis, word-based, grounded, shallow.

“The two types of approaches share the long-term vision of achieving
deep natural language understanding...”



Montague-style Compositional Semantics
Principle of Compositionality: The meaning of a complex expression is
a function of the meaning of its parts and the rules that combine them.

Example: John studies.

john’ — “John”
(Ax.(study’ x)) — “studies”
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A mini functional interpreter (python)

Principle of Compositionality: The meaning of a complex expression is
a function of the meaning of its parts and the rules that combine them.

Example: John studies.

john’ — “John”
(Ax.(study’ x)) — “studies”

>>> students_studying = set(["john"," mary"])
>>> study = lambda x : x in students_studying
>>> fun_application = lambda fun, val : fun(val)
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A mini functional interpreter (python)

Principle of Compositionality: The meaning of a complex expression is
a function of the meaning of its parts and the rules that combine them.

Example: John studies.

john’ — “John”
(Ax.(study’ x)) — “studies”
>>> students_studying = set(["john"," mary"])
>>> study = lambda x : x in students_studying
>>> fun_application = lambda fun, val : fun(val)
>>> fun_application(study,” mary”) ## What will we get?
>>> True



Montague-style Compositional Semantics

Principle of Compositionality: The meaning of a complex expression is
a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.
bill’ — “Bill”
(Ax.(study’ x)) — “study”
(M. Ax.(not (f x))) — “does not”
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Principle of Compositionality: The meaning of a complex expression is
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Example: Bill does not study.
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>>> neg = lambda F : (lambda x : not F(x))



A mini functional interpreter (python)

Principle of Compositionality: The meaning of a complex expression is
a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.
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(Ax.(study’ x)) — “study”
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A mini functional interpreter (python)

Principle of Compositionality: The meaning of a complex expression is
a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.
bill’ — “Bill”
(Ax.(study’ x)) — “study”
(M. Ax.(not (f x))) — “does not”

>>> students_studying = set([" john" ," mary"])
>>> study = lambda x : x in students_studying
>>> fun_application = lambda fun, val : fun(val)
>>> neg = lambda F : (lambda x : not F(x))
>>> neg(study)("bill") # True
>>> fun_application(neg,study)(" bill")



A mini functional interpreter (python)

Principle of Compositionality: The meaning of a complex expression is
a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.

bill’ — “Bill”
(Ax.(study’ x)) — “study”

(M. Ax.(not (f x))) — “does not”
>>> students_studying = set([" john" ," mary"])
>>> study = lambda x : x in students_studying
>>> fun_application = lambda fun, val : fun(val)
>>> neg = lambda F : (lambda x : not F(x))
>>> neg(study)(" bill") # True
>>> fun_application(neg,study)(" bill")
>>> fun_application(fun_application(neg,study),” bill")



A mini functional interpreter (python)

Principle of Compositionality: The meaning of a complex expression is
a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.

bill’ — “Bill”
(Ax.(study’ x)) — “study”
(M. Ax.(not (f x))) — “does not”

>>> students_studying = set([" john" ," mary"])

>>> study = lambda x : x in students_studying
>>> fun_application = lambda fun, val : fun(val)
>>> neg = lambda F : (lambda x : not F(x))
>>> neg(study)(" bill") # True

>>> fun_application(neg,study)(" bill")

>>> fun_application(fun_application(neg,study),” bill")
>>> neg(neg(sleep))(" bill")



Montague-style Compositional Semantics: What's needed

Principle of Compositionality: The meaning of a complex expression is
a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.
bill’ — “Bill”
(Ax.(study’ x)) — “study”
(M. Ax.(not (f x))) — “does not”

» Grammar rules for building syntactic structure.
> Interpretation rules to composing meaning.

» Decoding algorithm for generating structures



Montague-style Compositional Semantics: Issues

Principle of Compositionality: The meaning of a complex expression is
a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.
bill’ — “Bill”
(Ax.(study’ x)) — “study”
(M. Ax.(not (f x))) — “does not”

Features and (Computational) Issues:
» compositional, provides a full analysis.

» supports further inferencing

10
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Montague-style Compositional Semantics: Issues

Principle of Compositionality: The meaning of a complex expression is
a function of the meaning of its parts and the rules that combine them.

Example: Bill does not study.
bill’ — “Bill”
(Ax.(study’ x)) — “study”
(M. Ax.(not (f x))) — “does not”

Features and (Computational) Issues:
» compositional, provides a full analysis.
» supports further inferencing
» issue: Does not provide an analysis of words (not grounded).
> issue: s brittle, cannot handle uncertainty.

> issue: Says nothing about how the translation to logic works.

10



Statistical Approaches to Semantics

Statistical semantics hypothesis: “Statistical patterns of human

word usage can be used to figure out what people mean” Turney
et al. (2010)

corpus word-context matrix
The dog is outside... furry walking shiny driving
The shiny car is driving... dog 10 20 0 0
A cat is around... cat 12 25 2 0
A bike is car 0 0 23 26
bike 0 1 30 25

11



Statistical Approaches to Semantics

Statistical semantics hypothesis: “Statistical patterns of human
word usage can be used to figure out what people mean” Turney
et al. (2010)

corpus word-context matrix
furry walking shiny driving
e dog 4 20 0 0
bike cat 3 25 2 0
o ) car 0 0 5 26
5 bike 1 1 4 25

cat.

dog

0 —> s

furry



Example Tasks and Applications: Turney et al. (2010)

Statistical semantic models are often used in downstream
classification or clustering tasks/applications.

» Term-document matrices
» Document retrieval /clustering/classification.
» Question Answering and Retrieval.
» Essay scoring.
» Word-Context Matrices
» Word similarity/clustering/classification
» Word-sense disambiguation
» Automatic thesaurus generation/paraphrasing
» Pair-pair matrices
» Relational similarity/clustering/classification.
» Analogy comparison.

13



Statistical Approaches to Semantics

Statistical semantics hypothesis: “Statistical patterns of human

word usage can be used to figure out what people mean” Turney
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Features and Issues (caricature):
» Robust, requires little manual effort, grounded
» Can provide rich analysis of content words.
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Statistical Approaches to Semantics

Statistical semantics hypothesis: “Statistical patterns of human

word usage can be used to figure out what people mean” Turney
et al. (2010)

corpus word-context matrix
The dog is outside... furry walking shiny driving
The shiny car is driving... dog 10 20 0 0
A cat is around... cat 12 25 2 0
A bike is car 0 0 23 26
bike 0 1 30 25

Features and Issues (caricature):

v

Robust, requires little manual effort, grounded
» Can provide rich analysis of content words.

» issue: Hard to scale beyond words.
| 2

issue: In general, hard to model logical operations, shallow.
14



Mixing compositional and statistical semantics

Desiderata: Want a model of semantics that is robust, reflects
real-word usage and learnable, but one that is also compositional.
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Mixing compositional and statistical semantics

Desiderata: Want a model of semantics that is robust, reflects

real-word usage and learnable, but one that is also compositional.

» Generalization

» Logical semantics: generalize using composition and
abstract recursive structures.

» Machine Learning (classification): learns generalizations
through real-world examples (e.g. target input-output)

> Bridge: get our learning to target compositional structures.

15



A simple model: Liang and Potts

Model: a simple discriminative learning framework.
» compositional model: (semantic) context-free grammar.

» learning model: linear classification and first-order
optimization.

16



Compositional Model:

Linguistic Objects: < u,s,d >
> u: utterance
» s: semantic representation (symbolized as “u™)

» d: denotation (symbolized as [s])
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Compositional Model:

Linguistic Objects: < u,s,d >
> u: utterance
» s: semantic representation (symbolized as “u™)

» d: denotation (symbolized as [s])

Example: < 'seven minus five’, (- 7 5),2 >
< 'two minus two times two’, (* (- 2 2) 2),0 >

semantic parsing: u — s
interpretation: s — d

17



Computational Modeling: The full picture

» Standard processing pipeline

(FOR EVERY X /

. Semantic Parsing MAJORELT : T;
Input sem (FOR EVERY Y /

SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

List samples that contain
every major element Knowledge Representation

Interpretation

[sem] ={S10019,510059, ...}

Lunar QA system (Woods (1973))



Compositional Model: Context-free grammar

» provides the background grammar and interpretation rules

Syntax Semantic representation Denotation

N — one 1 1

N — two 2 2

R = plus + the R such that R(x, y) =x + y
R — minus - the R such that R(x, y) =x — y
R — times X the R such that R(x, y) =x % y
S = minus - the f such that flx) = —x
N-SN "STTNT [ I(I"N])

N - N R Ng ("R'"N.""Ng") ["RI(I"NL 107 NR™D)

19



Compositional Model: Context-free grammar

» provides the background grammar and interpretation rules

» example: u = two times two plus three

N: (plus (mult 2 2) 3)

T

N : (mult 2 2) R : plus N : 3

T | |

N:2 R :mult N:2 plus three

two times two

20



Compositional Model: Context-free grammar

» provides the background grammar and interpretation rules

» example: u = two times two plus three

N: (plus (mult 2 2) 3)

T

N : (mult 2 2) R : plus N : 3

T | |

N:2 R :mult N:2 plus three

two times two

>>> plus = lambda x,y : x + vy
>>> mult = lambda x,y : x ¥y

20



Compositional Model: Context-free grammar

» provides the background grammar and interpretation rules

» example: u = two times two plus three

N: (plus (mult 2 2) 3)

T

N : (mult 2 2) R : plus N : 3

T | |

N:2 R :mult N:2 plus three

two times two

>>> plus = lambda x,y : x + vy
>>> mult = lambda x,y : x ¥y
>>> plus(2,2) # 4
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Compositional Model: Context-free grammar

» provides the background grammar and interpretation rules

» example: u = two times two plus three

N: (plus (mult 2 2) 3)

T

N : (mult 2 2) R : plus N : 3

T | |

N:2 R :mult N:2 plus three

two times two

>>> plus = lambda x,y : x + vy
>>> mult = lambda x,y : x ¥y
>>> plus(plus(2,3),2) # 7
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Compositional Model: Context-free grammar

» provides the background grammar and interpretation rules

» example: u = two times two plus three

N: (plus (mult 2 2) 3)

T

N : (mult 2 2) R : plus N : 3

T | |

N:2 R :mult N:2 plus three

two times two

>>> plus = lambda x,y : x + vy
>>> mult = lambda x,y : x ¥y
>>> plus(mult(2,2),3) # 7
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Compositional Model: Components

» Components:
» Grammar rules for building syntactic structure. v’
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Compositional Model: Components

» Components:

» Grammar rules for building syntactic structure. v’

> Interpretation rules to composing meaning. v’

» Decoding algorithm for generating structures x (later lecture)
> Issues:

» example: u = two times two plus three

N: (plus ( 22) 3) N: (mult (plus 2 2) 3)
N ( 2 2) R : plus N : 3 N : (plus 2 2) R : mult N : 3
N:2 R: N:2 plus three N:2 R :mult N:2 plus three

two times two two times two
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Compositional Model: Components

» Components:

» Grammar rules for building syntactic structure. v’

> Interpretation rules to composing meaning. v’

» Decoding algorithm for generating structures x (later lecture)
> Issues:

» example: u = two times two plus three

N: (plus ( 2 2) 3) N: (mult 2 (plus 2 3))
o T
N : ( 2 2) R:plus N : 3 N :2 R : mult N : (plus 2 3)
/\\ /'\
N:2 R: N:2 pl‘us thlee tv\‘/o tirr‘1es N : 2 R: plus N ‘ 3
tv\‘/o tilLes tvto tvto pl‘us three

25



Learning Model

» Goal: Helps us learn the correct derivations and handle
uncertainty (word mappings, composition).

» Classifier: “a system that inputs a vector of discrete and/or
continuous feature values and outputs a single discrete
value, the class.” Domingos (2012).
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Learning Model

» Goal: Helps us learn the correct derivations and handle
uncertainty (word mappings, composition).

» Classifier: “a system that inputs a vector of discrete and/or
continuous feature values and outputs a single discrete
value, the class.” Domingos (2012).

» Components

>
>
>
>

training data D = {(x;, y;)|i...n}
feature representation of data
scoring and objective function
optimization procedure

26



Training data

Goal: Find the correct derivations and output using our
compositional model

27
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Training data

Goal: Find the correct derivations and output using our
compositional model

Logical forms (more information)

» (u="two minus two times two',s = (* (- 2 2) 2))

Denotations (less information)

» (u = "two minus two times two’, r = 0)

Weakly Supervised: In both cases, details are still hidden from
the learner.

27



Learning from Semantic Representations

> example: ( two times two plus three, (plus (mult 2 2) 3))

N: (plus (mult 2 2) 3) N: (plus (plus 2 2) 3)

N : (mult 2 2) R : plus N : 3 N : (plus 2 2) R : plus N : 3
_— w“ ~—~ ‘ ‘ /‘\ ‘ ‘
N:2 R:mul N:2 plus three N:2 R: plus N:2 plus three

two times two two times two

28



Learning from Semantic Representations

» example: ( two times two plus three, (plus (mult 2 2) 3))

N: (plus (mult 2 2) 3) N: (plus (plus 2 2) 3)
N : (mult 2 2) hplus N:3 N : (plus 2 2) R : plus N : 3
— - T T —~ /{\
N:2 R:mul N:2 pl‘us th‘ree N:2 R: plus N:2 pl‘us th‘ree
tvx‘/o t ixLe s tv‘vo tv‘vo t irLe s tv‘vo

> Trade off: More information (good) but more annotation (bad)
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Learning from Denotations

» example: ( two times two plus three,T)

N: (plus (mult 2 2) 3) N: (plus (plus 2 2) 3)
N Y
N : (mult 2 2) R : plus N : 3 N : (plus 2 2) R : plus N : 3
N:2 R :mul N:2 plus three N:2 R: plus N:2 plus three
two times two two times two

29



Learning from Denotations

> example: ( two times two plus three,?)

N: (plus (mult 2 2) 3) N: (plus (plus 2 2) 3)

N : (mult 2 2) R : plus N : 3 N : (plus 2 2) R : plus N; 3
T | | e | |
N:2 R:mul N:2 plus three N:2 R: plus N:2 plus three

two times two two times two

> Trade off: Less annotation (good) but less information (maybe bad)

29



Weak Supervision

Goal: Find the correct derivations and output using our
compositional model

Logical forms (more information)

» (u = "two minus two times two’,s = (x (- 2 2) 2))

Denotations (less information)

» (u="two minus two times two', r = 0)

“Current learning methods for NLP require annotating large corpora with supervisory
information ...[e.g. pos tags, syntactic parse trees, semantic role labels] ... Building
such corpora is an expensive, arduous task. As one moves towards deeper semantic
analysis the annotation task becomes increasingly more difficult and complex.”

Mooney (2008)
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Feature Representations: General Remark

"“At the end of the day, some machine learning projects succeed and fail. What
makes the difference? Easily the most important factor is the features used.”
Domingos (2012)

Feature representations ¢(x, y)
(x, ) ‘empty string’ ‘last word” “all words’
(twenty-five, O) € five [twenty, five]
(thirty-one, O) € one [thirty, one]
(forty-nine, O) € nine [forty, nine]
Train (fifty-two, E) € two [fifty, two]
(eighty-two, E) € two [eighty, two]
(eighty-four, E) € four [eighty, four]
(eighty-six, E) € six [eighty, six]
Test (cighty-five, O) e—E five = O [eighty, five] » E




Feature selection and overfitting

"What if the knowledge and data we have are not sufficient to completely
determine the correct classifier? Then we run the risk of just hallucinating a
classifier (or parts of it) that is not grounded in reality .. This problem is called

overfitting.” Domingos (2012)

Low

High

Bias

Low
Bias

» Bias: Tendency to consistently learn the wrong thing.
» Variance: Tendency to learn random things irrespective of the real

signal.

32



Good vs. Bad Feature Selection

Feature representations ¢(x, )

(x, ) ‘empty string’ ‘last word” “all words’

(twenty-five, O) € five [twenty, five]
(thirty-one, O) € one [thirty, one]
(forty-nine, O) € nine [forty, nine]

Train (fifty-two, E) € twWo [fifty, two]
(eighty-two, E) € tWo [eighty, two]
(eighty-four, E) € four [eighty, four]
(eighty-six, E) € six [eighty, six]

Test (eighty-five, O) e—E five » O [eighty, five] » E
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Feature Extraction Example

input: x = two times two plus three.

y1= N: (plus ( 2 2) 3)
L
N ( 2 2) R : plus N : 3
/\\
N:2 R: N:2 pl‘us thlee
tv\‘/o tilLeS tv‘vo

R : mult [ ’times’ ] — 1
R : plus [ ’plus’ ] — 1
d(xy1) = top [R : plus ] — 1

N :

Y2 =

N:

(plus (plus 2 2) 3)

N : (plus 2 2) R : plus N : 3

: plus N:2 plus three

two

2 R
two times
R :
R :
d(xy2) =

top [R: plus ] — 1

plus [ ’times’ ] — 1
plus [ ’plus’ ] — 1
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Scoring Function

(Linear) Score Function

» Scorey, (x,y) = w- ¢(x,y) = 27:1 wjo(x, y)
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Scoring Function

(Linear) Score Function

> Scorey (x,y) = w - ¢(x,y) = 371 wip(x, y)
» weight vector w = [wg = 0.1 wp, = 0.2 w3 = 0.0 ...]
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Scoring Function

(Linear) Score Function

> Scorey (x,y) = w - ¢(x,y) = 371 wip(x, y)
» weight vector w = [wg = 0.1 wp, = 0.2 w3 = 0.0 ...]

wi R : plus [ ‘times’ ] — 1
wo R : plus [ ’plus’ ] — 1
d(xy2) = wztop [ R : plus ] — 1

scorey (x,y2) = w - ¢(x, y2) = (0.1 % 1.0) + (0.2 1.0) + (0.0 + 1.0)



Scoring Function

(Linear) Score Function
> Score,(xy) = w+ ¢(x,y) = Y01 wid(x,y)
» weight vector w = [w; = 0.1 wp = 0.2 w3 = 0.0 ...]

> prediction: arg-max, .y Scorey(x,y)
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Objectives: What do we want to learn? (informal)

General Idea: want to learn a model (or weight vector) that can
distinguish correct and incorrect derivations.

yi= N: (plus ( 2 2) 3) y»= N: (plus (plus 2 2) 3)
N ( 2 2) R : plus N : 3 N : (plus 2 2) R : plus N : 3
N:2 R: N:2 plus three N:2 R: plus N:2 plus three
two times two two times two
R : mult [ ‘times’ ] — 1 R : plus [ ’times’ ] — 1
R : plus [ ’plus’ ] — 1 R : plus [ ’plus’ ] — 1
p(xy1) = top [R : plus ] — 1 P(xy2) = top [R : plus ] — 1
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Objectives: What do we want to learn? (informal)

General Idea: want to learn a model (or weight vector) that can
distinguish correct and incorrect derivations.

y1= N: (plus ( 2 2) 3) N: (mult 2 (plus 2 3))

N ( 2 2) R : plus N : 3 N :2 R : mult N : (plus 2 3)
N:2 R: N:2 plus three two times N : 2 R: plus N : 3
two times two two plus three

R : mult [ ’times’ ] — 1 R : plus [ ’times’ ] — 1
R : plus [ ’plus’] — 1 R : plus [ ’plus’ ] — 1
0¥1) = | plus (R : mult ] — 1 S(xy2) = | mult [R: plus ] — 1
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Objectives: What do we want to learn? (formal)

» hinge loss: (learning from logical forms)
n
min,, cpd Z maxy ey [Score, (x,y')+c(y, y')]—Scoren(x, y)
(x.y)eD

> ("two minus two times two’,s = (* (- 2 2) 2))
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Objectives: What do we want to learn? (formal)

» hinge loss: (learning from logical forms)

n
min,, cpd Z maxy ey [Score, (x,y')+c(y, y')]—Scoren(x, y)
(x.y)eD
> ('two minus two times two’,s = (x (- 2 2) 2))

» In English: select parameters that minimize the cumulative
loss over the training data.
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Objectives: What do we want to learn? (formal)

» hinge loss: (learning from logical forms)

n

min,, cpd Z maxy ey [Score, (x,y')+c(y, y')]—Scoren(x, y)
(x,y)eD

> ('two minus two times two’,s = (x (- 2 2) 2))

» In English: select parameters that minimize the cumulative
loss over the training data.

» Missing: A decoding algorithm for generating Y (not trivial,
Y might be very large).
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Optimization: How do | achieve this objective?

» Stochastic gradient descent: An online learning and
optimization algorithm (more about this in future lectures).

STOCHASTICGRADIENTDESCENT(D, T, 17)
D: a set of training examples (x,y) € (X' x)))
T: the number of passes to make through the data
n > 0: learning rate (e.g., V—%)
Initialize w < 0
Repeat T times
for each (x, y) € D (in random order)
7 < arg max, ey Scorey (x, ') +c(, ')
W w+ 70 y) - p(x, )
Return w

= N7 QIS Q.



Optimization: lllustration

a Candidates GEN(x) for utterance x = two times two plus three

bt
Ni(+ (x22)3) = 7

2

Ni(+ (+22)3) =7

s
Ni(x 2 (+23) =10

N:(x 22) R+ N:3 N:(+22) Re+ N:3 N2 Rex N:(+ 23)
N:2 Rix N2 plus three N:2 R+ N2 plus three two times N:2 R+ N3
two times wo two times wo two  plus three
Rix(fimes]: 1 Re+{times] :1 Rix(times] : 1
@(x, y1) =| Retlplus]:1 @(x, y2) =| Ret[plus]:1 @(x, y3) =| Ret[plus
top[R:+]: 1 top[R:+] : 1 top[R:x
b Learning from logical forms (Section 4.1)

Iteration 1 Iteration 2 Iteration 3
Rix[times]:0 Rix[times] :0 Rox([times]: 1
Ritltimes):0 | Seores: [0,0,0] Rit[times]:0 | Soores:[1,1,-1] Rit[times]: 1| Scores: [2,0,0]

w = | Ritplus]:0| y=y, = w= Ri+(plus]:0 = w= Ri+lplus):0
10pIR:+1:0 | 5=y, (tied with y,) toplR:+]: 1 top[R:+]: 1
top[R:x]:0 ° top[R:x]:—1 top[R:x]:—1

€ Learning from denotations (Section 4.2)

Iteration 1 Iteration 2
Rixltimes):0 | Scores: [0,0,0] Rix[times):0 | gcores: [1,1,~1]

Ri+ltimes] : 0 _ Ri+[times]:0 _

w= | Rafples]:0 GEN(x, f") = Q;-m = w= | Rebiphsl 0 GEN(x, fi) ={r 2}
toplRi#]:0| ¥=N (tied with y,) toplR+]:1 | Y=N (tied with y,)
top[R:x]:0 top[R:x]:-1| ¥ =y, (tied with y;)
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Learning Model

» Components
» training data: D = {(x;,y;)|i...n} v/
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Learning Model

» Components
» training data: D = {(x;,y;)|i...n} v/
» feature representation of data v
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Learning Model

» Components
» training data: D = {(x;,y;)|i...n} v/
» feature representation of data v
» scoring and objective function v/
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Learning Model

» Components

>
>
>
>

training data: D = {(x;, yi)|i...n} v/
feature representation of data v/
scoring and objective function v/
optimization procedure v/
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Learning Model

» Components

training data: D = {(x;, yi)|i...n} v/
feature representation of data v/
scoring and objective function v/
optimization procedure v/

» Important ldeas

» What kind of data do we learn from? (differs quite a bit)
» What kind of features do we need?

>
>
>
>

42



Experimentation and Evaluation

» Training Set: A portion of the data to train model on.

» Test Set: An unseen portion of the data to evaluate on.

» Dev Set : (optional) An unseen portion of the data for
analysis, tuning hyper parameters, ..
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Experimentation and Evaluation

» Training Set: A portion of the data to train model on.
» Test Set: An unseen portion of the data to evaluate on.

» Dev Set : (optional) An unseen portion of the data for
analysis, tuning hyper parameters, ..

» Evaluationl: Given unseen examples, how often does my
model produce the correct output semantic representation?

» Evaluation2: Given unseen examples, how often does my
model produce the correct output answer?
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Conclusions and Take Aways

» Presented a simple model that mixes machine learning and
compositional semantics.

» Conceptually describes most of the work in this class.
» Technically describes many of the models we will use.

» Fundamental Problem: Which semantics representations
do we use, and what do we learn from?
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» Presented a simple model that mixes machine learning and
compositional semantics.

» Conceptually describes most of the work in this class.
» Technically describes many of the models we will use.

» Fundamental Problem: Which semantics representations
do we use, and what do we learn from?

» Question: Does this particular actually work?

a4



Conclusions and Take Aways

» Presented a simple model that mixes machine learning and
compositional semantics.

» Conceptually describes most of the work in this class.
» Technically describes many of the models we will use.

» Fundamental Problem: Which semantics representations
do we use, and what do we learn from?

» Question: Does this particular actually work?

» Yes! Liang et al. (2011) (lecture 5), Berant et al. (2013);
Berant and Liang (2014) (presentation papers)
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Roadmap

Lecture 2:

v

Lecture 3:

v

Lecture 4:

v

Lecture 5:

v

rule extraction, decoding (parsing perspective)
rule extraction, decoding (MT perspective)
structured classification and prediction.

grounded learning (might skip).
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