Lecture 5: Semantic Parsing, CCGs, and
Structured Classification

Kyle Richardson

kyle@ims.uni-stuttgart.de

May 12, 2016

Lecture Plan

> paper: Zettlemoyer and Collins (2012)

> general topics: (P)CCGs, compositional semantic models, log-linear

models, (stochastic) gradient descent.

The Big Picture (reminder)

» Standard processing pipeline

(FOR EVERY X /

. Semantic Parsing MAJORELT : T;
Input sem (FOR EVERY Y /

SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

List samples that contain
every major element Knowledge Representation

Interpretation

[sem] ={S10019,810059, ...}

Lunar QA system (Woods (1973))

Semantic Parsing: Basic Ingredients

» Compositional Semantic Model: Generates compositional meaning
representations (e.g., logical forms, functional representations, ...)

> Translation Model: Maps text input to representations (tools already
discussed: string rewriting, CFGs, SCFGs).

> Rule Extraction: Finds the candidate translation rules (e.g., SILT,

word-alignments, ...)

> Probabilistic Model: Used for learning and finding the best translations
(PCFGs,PSCFGs, EM).

Semantic Parsing: Basic Ingredients

» Compositional Semantic Model: Generates compositional meaning
representations (e.g., logical forms, functional representations, ...)

> Translation Model: Maps text input to representations (tools already
discussed: string rewriting, CFGs, SCFGs).

> Rule Extraction: Finds the candidate translation rules (e.g., SILT,
word-alignments, ...)

> Probabilistic Model: Used for learning and finding the best translations
(PCFGs,PSCFGs, EM).

> This lecture: Introduce a new model based on (Combinatory)

Categorial Grammar and log-linear models.

Classical Categorial Grammar (CG)

> Lexicalism: lexical entries encode nearly all information about how

words are combined, no separate syntactic component.

> An example (syntactic) lexicon A

John = NP (basic category)
Mary = NP (basic category)
sleeps = S \NP (derived category)
loves = (S\NP) /NP
quietly = (S\NP)/(S\NP)

Classical Categorial Grammar (CG)

> An example (syntactic) lexicon A

John = NP (basic category)
Mary = NP (basic category)
sleeps = S\NP (derived category)
loves = (S\NP)/NP
quietly = (S\NP)/(S\NP)

>>> john = 'NP’; mary = 'NP’
>>> sleeps = lambda x : 'S’ if x == 'NP’ else None

Classical Categorial Grammar (CG)

> An example (syntactic) lexicon A

John = NP (basic category)
Mary = NP (basic category)
sleeps = S\NP (derived category)
loves = (S\NP)/NP
quietly = (S\NP)/(S\NP)

>>> john = 'NP’; mary = 'NP’

>>> sleeps = lambda x : 'S’ if x == 'NP’ else None
>>> sleeps(john)

=>"'S

Classical Categorial Grammar (CG)

> An example (syntactic) lexicon A

John = NP (basic category)
Mary = NP (basic category)
sleeps = S\NP (derived category)
loves = (S\NP)/NP
quietly = (S\NP)/(S\NP)

>>> john = 'NP’; mary = 'NP’
>>> loves = lambda x : (lambda y : 'S’ if y == 'NP’ else None) \
if x == NP else None

>>> loves(mary)

Classical Categorial Grammar (CG)

> An example (syntactic) lexicon A

John = NP (basic category)
Mary = NP (basic category)
sleeps = S\NP (derived category)
loves = (S\NP) /NP
quietly = (S\NP)/(S\NP)

>>> john = 'NP’; mary = 'NP’

>>> loves = lambda x : (lambda y : 'S’ if y == 'NP’ else None) \
if x == NP else None

>>> loves(mary)

=> <function __main__ . <lambda>>

Classical Categorial Grammar (CG)

> An example (syntactic) lexicon A

John = NP (basic category)
Mary = NP (basic category)
sleeps = S\NP (derived category)
loves = (S\NP) /NP
quietly = (S\NP)/(S\NP)

>>> john = 'NP’; mary = 'NP’

>>> loves = lambda x : (lambda y : 'S’ if y == 'NP’ else None) \
if x == NP else None

>>> loves(mary)(john)

=>"S’

10

CG Derivations

> Often shown in a tabular proof form, as a series of cancellation steps.

loves Mary

John (S\NP) /NP NP

— (>)

NP S\NP

(<)

11

CG Derivations

> Often shown in a tabular proof form, as a series of cancellation steps.

loves Mary

John (S\NP) /NP NP

— (>)

NP S\NP

(<)

> function application
» > A/BB — A
» <: BA\B— A

11

CG Derivations

> Often shown in a tabular proof form, as a series of cancellation steps.

loves Mary

John (S\NP) /NP NP

— (>)

NP S\NP

(<)
S

>>> apply_right = lambda fun,arg : fun(arg)
>>> apply_left = lambda arg,fun : fun(arg)
>>> apply_right(loves,mary)

=> <function _main__. <lambda>>

12

CG Derivations

> Often shown in a tabular proof form, as a series of cancellation steps.

loves Mary

John (S\NP) /NP NP

— (>)

NP S\NP

(<)
S

>>> apply_right = lambda fun, arg: fun(arg)
>>> apply_left = lambda arg, fun: fun(arg)

>>> apply_left(john,apply_right(loves,mary))
=>"'S

13

CG and Semantics

> Lexical rules can be extended to have a compositional semantics.

John = NP : john’

Mary = NP : mary’

sleeps = S\NP : Ax.sleep(x)

loves = (S\NP) /NP : Ay, Ax.loves(x,y)
quietly := (S\NP)/(S\NP) : \f.\x. f(x) A quiet(f,x)

14

CG Derivations

> Often shown in a tabular proof form, as a series of cancellation steps.

loves Mary

John (S\NP) /NP : Ay, Ax.love(x,y) NP : mary’

(>)

NP : john’ S\NP : Ax.love(x, mary’)

(<)

S : love(john’,mary’)

> function application with semantics
» > A/B:f B:g— A:f(g)
» <:B:g A\B:f— A:f(g)

15

CG Derivations

» Often shown in a tabular proof form, as a series of cancellation steps.

loves Mary

John (S\NP) /NP : Ay, Ax.love(x,y) NP : mary’

(>)

NP : john’ S\NP : Ax.love(x, mary’)

(<)

S : love(john’,mary’)

> Derivation: (L, T), where L is a logical form (top), and T is the

derivation steps (parse tree).

16

Combinatory Categorial Grammar (CCG)

> A particular theory of categorial grammar, which uses additional function
application types (see paper for pointers or Steedman (2000)).

e.g., composition: A/B:fB/C:g — A/C : Ax.f(g(x))

> Benefits: Is linguistically motivated, much more powerful than

context-free grammars (mildly context-sensitive), polynomial parsing.

17

Combinatory Categorial Grammar (CCG)

> A particular theory of categorial grammar, which uses additional function
application types (see paper for pointers or Steedman (2000)).

e.g., composition: A/B:fB/C:g — A/C : Ax.f(g(x))

> Benefits: Is linguistically motivated, much more powerful than

context-free grammars (mildly context-sensitive), polynomial parsing.

> Parsing: Extended version of CKY algorithm (Steedman (2000))

17

A note about mild context-sensitivity

regular languages

context-free languages

mild. context-sensitive

context-sensitive

> CCGs and other mildly context-sensitive formalism (TAGs, LIGs, ...

allows derivations/graphs more general than trees.

18

A note about mild context-sensitivity

regular languages

context-free languages

mild. context-sensitive

context-sensitive

> CCGs and other mildly context-sensitive formalism (TAGs, LIGs, ...)

allows derivations/graphs more general than trees.

» Theoretical question: what types of grammar formalisms are best

suited for semantic parsing?

Earlier Lecture (Liang and Potts 2015)

» We have already seen something like categorial grammar.

> Rules ares divided between syntactic and semantic rules.

Syntax Semantic representation Denotation

N — one 1 1

N — two 2 2

R = plus + the R such that R(x, y) =x + y
R — minus - the R such that R(x, y) =x — y
R — times X the R such that R(x, y) =x % y
S = minus - the f such that flx) = —x
N-SN "STTNT [I(I"N])

N - N R Ng ("R'"N.""Ng") ["RI(I"NL 107 NR™D)

19

Compositional Semantics (past lecture)

Principle of Compositionality: The meaning of a complex expression is a

function of the meaning of its parts and the rules that combine them.

Example: John studies.

john’ — “John”
(Ax.(study’ x)) — “studies”

(Ax.(study’ x))(john) — (study’ john’) — { True, False}

/\

john’ (Ax.(study’ x))

John studies

20

Compositional Semantics (past lecture)

Principle of Compositionality: The meaning of a complex expression is a

function of the meaning of its parts and the rules that combine them.

Example: John studies.
john’ — “John”
(Ax.(study’ x)) — “studies”

>>> students_studying = set([" john",” mary"])
>>> study = lambda x : x in students_studying
>>> fun_application = lambda fun, val : fun(val)
>>> fun_application(study," bill")

>>> False

21

Geoquery Logical forms

> Zettlemoyer and Collins (2012) use a conventional logical language.
> constants: entities, numbers, functions
> logical connectives: conjunction (A), disjunction (V), negation
(=), implication (—)
> quantifiers: universal (V) and existential (3).
> lambda expressions: anonymous functions (Ax.f(x))
> other quantifiers/functions: arg max, definite descriptions (¢),..

Example: What states border Texas?

Ax.state(x) A borders(x, texas)

22

Geoquery Logical forms

> Zettlemoyer and Collins (2012) use a conventional logical language.
> constants: entities, numbers, functions
> logical connectives: conjunction (A), disjunction (V), negation
(=), implication (—)
> quantifiers: universal (V) and existential (3).
> lambda expressions: anonymous functions (Ax.f(x))
> other quantifiers/functions: arg max, definite descriptions (¢),..

Example: What is the largest state?

arg max(Ax.state(x), Ax.size(x))

23

A mini functional interpreter: Constants (Haskell)?

» Example: What states border Texas?

Ax.state(x) A borders(x, texas)

Texas = NP : texas

border := (S\NP) /NP : AyAx.borders(x, y)
states = S\N : Ax.state(x)
which = (S/(S\NP))/N : Af,Ag, Ax.f(x) A g(x)

Prelude > let state a = (elem a ["nh","ma","vt"])
Prelude > state "nh"
=> True

1 .
you can try out these examples using https://tryhaskell.org/

24

A mini functional interpreter: Constants (Haskell)?

» Example: What states border Texas?

Ax.state(x) A borders(x, texas)

Texas = NP : texas

border := (S\NP) /NP : AyAx.borders(x, y)
states = S\N : Ax.state(x)
which = (S/(S\NP))/N : Af,Ag, Ax.f(x) A g(x)

Prelude > let state a = (elem a ["nh","ma","vt"])
Prelude > state "nh"

=> True

Prelude > :type state

=> state :: [Char] -> Bool

1 .
you can try out these examples using https://tryhaskell.org/

24

A mini functional interpreter: Constants (Haskell)?

» Example: What states border Texas?

Ax.state(x) A borders(x, texas)

Texas = NP : texas

border := (S\NP) /NP : AyAx.borders(x, y)
states = S\N : Ax.state(x)
which = (S/(S\NP))/N : Af,Ag, Ax.f(x) A g(x)

Prelude > let state a = (elem a ["nh","ma","vt"])
Prelude > state "nh"

=> True

Prelude > :type state

=> state :: [Char] -> Bool

semantic type: e — t

1 .
you can try out these examples using https://tryhaskell.org/

24

A mini functional interpreter: Constants (Haskell)

» Example: What states border Texas?

Ax.state(x) A borders(x, texas)

Texas = NP : texas

border = (S\NP) /NP : AyAx.borders(x,y)
states = S\N : Ax.state(x)
which = (S/(S\NP))/N : Af,Ag, Ax.f(x) A g(x)

Prelude > let borders ::([Char], [Char]) -> Bool;

Prelude | borders a = (elem a [("oklahoma","texas")])

25

A mini functional interpreter: Constants (Haskell)

» Example: What states border Texas?

Ax.state(x) A borders(x, texas)

Texas = NP : texas

border = (S\NP) /NP : AyAx.borders(x,y)
states = S\N : Ax.state(x)
which = (S/(S\NP))/N : Af,Ag, Ax.f(x) A g(x)

Prelude > let borders ::([Char], [Char]) -> Bool;
Prelude | borders a = (elem a [("oklahoma","texas")])
Prelude > borders ("mnh","texas")

=> False

25

CG and Binary Rules

> CGs typically assume binary rules/functions (or curried functions), so that

function application applies to one argument at a time.
> Example: What states border Texas?

Ax.state(x) A borders(x, texas)

Texas = NP : texas

border = (S\NP) /NP : AyAx.borders(x, y)
states = S\N : Ax.state(x)
which = (S/(S\NP))/N : Af,Ag, dAx.f(x) A g(x)

Prelude > :type borders
=> borders :: ([Char], [Char]) -> Bool

26

CG and Binary Rules

> CGs typically assume binary rules/functions (or curried functions), so that

function application applies to one argument at a time.
> Example: What states border Texas?

Ax.state(x) A borders(x, texas)

Texas = NP : texas

border = (S\NP) /NP : AyAx.borders(x, y)
states = S\N : Ax.state(x)
which = (S/(S\NP))/N : Af,Ag, dAx.f(x) A g(x)

Prelude > :type borders
=> borders :: ([Char], [Char]) -> Bool

Prelude > let borders_c = curry borders

26

CG and Binary Rules

> CGs typically assume binary rules/functions (or curried functions), so that

function application applies to one argument at a time.
> Example: What states border Texas?

Ax.state(x) A borders(x, texas)

Texas = NP : texas

border = (S\NP) /NP : AyAx.borders(x, y)
states = S\N : Ax.state(x)
which = (S/(S\NP))/N : Af,Ag, dAx.f(x) A g(x)

Prelude > :type borders

=> borders :: ([Char], [Char]) -> Bool
Prelude > let borders_c = curry borders
Prelude > :type borders_c

=> borders_c :: [Char] -> [Char] -> Bool

26

CG and Binary Rules

> CGs typically assume binary rules/functions (or curried functions), so that

function application applies to one argument at a time.
> Example: What states border Texas?

Ax.state(x) A borders(x, texas)

Texas = NP : texas

border = (S\NP) /NP : AyAx.borders(x, y)
states = S\N : Ax.state(x)
which = (S/(S\NP))/N : Af,Ag, dAx.f(x) A g(x)

Prelude > :type borders

=> borders :: ([Char], [Char]) -> Bool

Prelude > let borders_c = curry borders

Prelude > :type borders_c

=> borders_c :: [Char] -> [Char] -> Bool
semantic type: e — e —t

26

CG and Binary Rules

> CGs typically assume binary rules/functions (or curried functions), so that

function application applies to one argument at a time.
» Example: What states border Texas?

Ax.state(x) A borders(x, texas)

Texas = NP : texas

border = (S\NP) /NP : AyAx.borders(x, y)
states = S\N : Ax.state(x)
which = (S/(S\NP))/N : Af,Ag, Ax.f(x) A g(x)

Prelude > let borders_c = curry borders
Prelude > borders_c "oklahoma" "texas"

=> True

27

CG and Binary Rules

> CGs typically assume binary rules/functions (or curried functions), so that

function application applies to one argument at a time.
» Example: What states border Texas?

Ax.state(x) A borders(x, texas)

Texas = NP : texas

border = (S\NP) /NP : AyAx.borders(x, y)
states = S\N : Ax.state(x)
which = (S/(S\NP))/N : Af,Ag, Ax.f(x) A g(x)

Prelude > let borders_c = curry borders
Prelude > borders_c "oklahoma" "texas"
=> True

Prelude > borders_c 10 "texas"

27

CG and Binary Rules

> CGs typically assume binary rules/functions (or curried functions), so that

function application applies to one argument at a time.
» Example: What states border Texas?

Ax.state(x) A borders(x, texas)

Texas = NP : texas

border = (S\NP) /NP : AyAx.borders(x, y)
states = S\N : Ax.state(x)
which = (S/(S\NP))/N : Af,Ag, Ax.f(x) A g(x)

Prelude > let borders_c = curry borders
Prelude > borders_c "oklahoma" "texas"
=> True

Prelude > borders_c 10 "texas"

=> type error

27

CG and Partial Function Application

borders Texas

Oklahoma (S\NP) /NP : Ay, Ax.borders(x,y) NP : texas’

(>)

NP : oklahoma’ S\NP : Ax.borders(x, texas’)

(<)

S : borders(oklahoma’,texas’)

Prelude > let borders_texas = borders_c "texas"

Prelude > :type borders_texas

28

CG and Partial Function Application

borders Texas

Oklahoma (S\NP) /NP : Ay, Ax.borders(x,y) NP : texas’

(>)

NP : oklahoma’ S\NP : Ax.borders(x, texas’)

(<)

S : borders(oklahoma’,texas’)

Prelude > let borders_texas = borders_c "texas"
Prelude > :type borders_texas
=> borders_texas :: [Char] -> Bool

28

CG and Partial Function Application

borders Texas

Oklahoma (S\NP) /NP : Ay, Ax.borders(x,y) NP : texas’

(>)

NP : oklahoma’ S\NP : Ax.borders(x, texas')

(<)

S : borders(oklahoma’,texas’)

Prelude > let borders_texas = borders_c "texas"
Prelude > borders_texas "oklahoma"

=> True

29

CG and Partial Function Application

borders Texas

Oklahoma (S\NP) /NP : Ay, Ax.borders(x,y) NP : texas’

(>)

NP : oklahoma’ S\NP : Ax.borders(x, texas')

(<)

S : borders(oklahoma’,texas’)

Prelude > right_apply f x = (f x)
Prelude > right_apply borders_c "texas"

30

Overall Model: Zettlemoyer and Collins (2012)

» Compositional Semantic Model: assumes the geo-query

representations and semantics we've discussed. v’

»> Probabilistic Model: Deciding between different analyses, handling
spurious ambiguity.

> Lexical (Rule) Extraction: Finding set of CCG lexical entries in A.

31

Probabilistic CCG Model

> Assumption: Let's say (for now) we have a crude CCG lexicon A that
over-generates for any given input

> Derivation: a pair, (L, T), where L is the final logical form and T is the
derivation tree.

Example: Oklahoma borders Texas

borders Texas

Oklahoma (S\NP) /NP : Ay, Ax.borders(x,y) NP : texas’

(>)

NP : oklahoma’ S\NP : Ax.borders(x, texas’)

(<)

32

Probabilistic CCG Model

> Assumption: Let's say (for now) we have a crude CCG lexicon A that
over-generates for any given input
> Derivation: a pair, (L, T), where L is the final logical form and T is the

derivation tree.

Example: Oklahoma borders Texas

borders Texas
Oklahoma NP : texas’ (S\NP)/NP : Ay, Ax.borders(x,y)
(<)
NP : oklahoma’ S\NP :

(<)

33

Probabilistic CCG Model

> Assumption: Let's say (for now) we have a crude CCG lexicon A that
over-generates for any given input

> Derivation: a pair, (L, T), where L is the final logical form and T is the
derivation tree.

Example: Oklahoma borders Texas

borders Texas

Oklahoma C(S\NP)/NP : Ay, Ax.borders(x,y) NP : texas’
>)

NP : ohio’ S\NP : Ax.borders(x, texas’)

(<)

S : borders(ohio’,texas’) X

34

Probabilistic CCG Model

> Use a log-linear formulation of CCG (Clark and Curran (2003)):
ol (LT.5)-6

p(L,T|5:9)=W

» Parsing Problem:

P(L|S;0)= L, T|S;0
argmaxP(L| 5:6) = 3 p(L. T | 5:6)

T

35

Probabilistic CCG Model

> Use a log-linear formulation of CCG (Clark and Curran (2003)):

eF(L,T,S)-H

p(LT[5:0)= sz
Z(L,T) ef(L,T,5)6
» Parsing Problem:

P(L|S;0)= L, T|S;0
argmaxP(L| 5:6) = 3 p(L. T | 5:6)

T

» Note: T might be very large, use dynamic programming.

35

Probabilistic CCG Model

> Use a log-linear formulation of CCG (Clark and Curran (2003)):
ol (LT.5)-6

p(L, T |S:0)= S T
» Parsing Problem:

P(L|S;0)= L, T|S;0
argmaxP(L| 5:6) = 3 p(L. T | 5:6)

T

» Note: T might be very large, use dynamic programming.

> Learning Setting: The correct derivations are not annotated (latent),

no further supervision is provided (weak). Lexicon is learned from data.

35

Log-linear Model: Basics

> Log-Linear Model: 2
> A set X of inputs (e.g. sentences)
> A set Y of labels/structures.
» A feature function f : X x Y — R for any pair (x,y)
> A weight vector 6

» Conditional Model: for x € X,y € Y

ef(x,y)-@
ply | x;0) = Z(x.0)

2E><amp|es and ideas from Michael Collin’s and Charles Elkan’s tutorials (see syllabus).

36

Log-linear Model: Basics

» Conditional Model: for xe X,y € Y
f(x,y)-0

P(Y|X;9):m

> e*: or exponential function exp(x) (keeps scores positive)
> inner product: (sum of features f; times feature weights 6;)

f(x7}/) 0= Zekfk(xvy)

k=1
> normalization term or partition function:

Z(x,0) = Z e)0

y'ey

37

Structured Classification and Features

» Structured classification: We assume that labels in) has a rich internal
structure (e.g., parse trees, pos tag sequences).

» Individual feature functions:

filx,y) > Rfori=1,..,d

38

Structured Classification and Features

» Structured classification: We assume that labels in) has a rich internal
structure (e.g., parse trees, pos tag sequences).

» Individual feature functions:

filx,y) > Rfori=1,..,d

> In the general case for log-linear models, there is no restriction on
the types of features you can define.

38

Structured Classification and Features

» Structured classification: We assume that labels in) has a rich internal
structure (e.g., parse trees, pos tag sequences).

» Individual feature functions:

filx,y) > Rfori=1,..,d

> In the general case for log-linear models, there is no restriction on
the types of features you can define.

> Feature Templates: features are not usually specified individually, but

in terms of more general classes:

38

Features: Part of speech tagging

> Goal: Assign to a given input word w; in a sentences a part-of-speech
tag given a set of tags V={N,ADJ,PN, ...}

Example: Thep dogy sleeps

39

Features: Part of speech tagging

> Goal: Assign to a given input word w; in a sentences a part-of-speech
tag given a set of tags V={N,ADJ,PN, ...}

Example: Thep dogy sleeps

1 each word w; € x has tag y
. — j
f'd(WjAY)(X’y) - { 0 otherwise

J 1 each word w; and w;; have tag y
f"d(""jfl/\""j/\}’)(x’y) _{ 0 otherwise ! !

39

Features: Part of speech tagging

> Goal: Assign to a given input word w; in a sentences a part-of-speech
tag given a set of tags V={N,ADJ,PN, ...}

Example: Thep dogy sleeps

1 each word w; € x has tag y
. — j
f'd(WjAY)(X’y) - { 0 otherwise

J 1 each word w; and w;; have tag y
f"d(""jfl/\""j/\}’)(x’y) _{ 0 otherwise ! !

100 my mother likes y tags
f;‘d(mother,feature)(X7Y) = { 0 ot}l'/1erwise yiee

39

Features: Part of speech tagging

> Goal: Assign to a given input word w; in a sentences a part-of-speech
tag given a set of tags V={N,ADJ,PN, ...}

Example: Thep dogy sleeps

1 each word w; € x has tag y
. — j
f'd(WjAY)(X’y) - { 0 otherwise

J 1 each word w; and w;; have tag y
f"d(""jfl/\""j/\}’)(x’y) _{ 0 otherwise ! !

100 my mother likes y tags
f;’d(mother,feature)(X7Y) = { 0 ot}l'/1erwise yiee

" At the end of the day... the important factor is the features used” Domingos (2012)

Local CCG features: Zettlemoyer and Collins (2012)

> Output labels: Y is the set of (structured) CCG derivations.

> Local features: Limit features to lexical rules in derivations

40

Local CCG features: Zettlemoyer and Collins (2012)

> Output labels: Y is the set of (structured) CCG derivations.

> Local features: Limit features to lexical rules in derivations

borders Texas

Oklahoma (S\NP) /NP : Ay, Ax.borders(x,y) NP : texas’

(>)

NP : oklahoma’ S\NP : Ax.borders(x, texas’)

(<)

S : borders(oklahoma’,texas’)

40

Local CCG features: Zettlemoyer and Collins (2012)

> Output labels: Y is the set of (structured) CCG derivations.

> Local features: Limit features to lexical rules in derivations

borders Texas

Oklahoma (S\NP) /NP : Ay, Ax.borders(x,y) NP : texas’

(>)

NP : oklahoma’ S\NP : Ax.borders(x, texas’)

(<)

S : borders(oklahoma’,texas’)

fia@e : texas’)(X,y) = count(NP : texas’) =1

40

Local versus non-local features

» Why only local?: Can be efficiently and easy extracted using our

normal parsing algorithms and dynamic programming.

» Chart data-structure (e.g., in CKY) is a flat structure of cell entries.

borders Texas

Oklahoma (S\NP) /NP : Ay, Ax.borders(x,y) NP : texas’

(>)

NP : oklahoma’ S\NP : Ax.borders(x, texas’)

(<)

S : borders(oklahoma’,texas’)

fi(x,y) = (" Oklahoma”, "borders”, NP : texas’)

41

Local versus non-local features

» Why only local?: Can be efficiently and easy extracted using our
normal parsing algorithms and dynamic programming.

» Chart data-structure (e.g., in CKY) is a flat structure of cell entries.

> Non-local features: getting around these issues.

> k-best parsing: train a model on k-best trees (more on this later).
> forest-reranking: Huang (2008).

42

Parameter Estimation in Log-Linear Models: Basics

> Learning task: choose values for feature weights that solve some
objective.
Training Data: D = {(x;, y:)}/-1

» Maximum Likelihood: find a model 6* that maximizes the probability of

training data (or logarithm of conditional likelihood (LCL)):

0" = max][pyi | x:0)

i=1

= max) _ log ply: | xi;0)

i=1

43

Optimization and Gradient methods

> Optimization: method for solving your objective.

> Intuitively: assigning numbers to feature weights: 0y, ..., 04 € 69

a4

Optimization and Gradient methods

> Optimization: method for solving your objective.
> Intuitively: assigning numbers to feature weights: 0y, ..., 04 € 69

> Gradient-based optimization: Uses a tool from calculus, the gradient

a4

Optimization and Gradient methods

> Optimization: method for solving your objective.
> Intuitively: assigning numbers to feature weights: 0y, ..., 04 € 69
> Gradient-based optimization: Uses a tool from calculus, the gradient

» Gradient: A type of derivative, or measure of the rate that a
function changes
> Tells the direction to move in order to get closer to objective.

a4

Gradient Methods: Intuitive explanation 3

Imagine your hobby is blindfolded mountain climbing, i.e., someone
blindfolds you and puts you on the side of a mountain. Your goal is to
reach the peak of the mountain by feeling things out, e.g., moving in the
direction that feels upward until you reach the peak.

If mountain is concave, you will eventually reach your goal.

3E><amp|e taken from Hal Daume III's book: http://ciml.info/
45

Gradient Methods: Intuitive explanation 3

Imagine your hobby is blindfolded mountain climbing, i.e., someone
blindfolds you and puts you on the side of a mountain. Your goal is to
reach the peak of the mountain by feeling things out, e.g., moving in the
direction that feels upward until you reach the peak.

If mountain is concave, you will eventually reach your goal.

> Objective: Reach the maximum point (the peak) of the mountain.

3E><amp|e taken from Hal Daume III's book: http://ciml.info/

45

Gradient Methods: Intuitive explanation 3

Imagine your hobby is blindfolded mountain climbing, i.e., someone
blindfolds you and puts you on the side of a mountain. Your goal is to
reach the peak of the mountain by feeling things out, e.g., moving in the
direction that feels upward until you reach the peak.

If mountain is concave, you will eventually reach your goal.

> Objective: Reach the maximum point (the peak) of the mountain.

» Gradient: The direction to move at each point to get closer to the point

(or your objective).

3E><amp|e taken from Hal Daume III's book: http://ciml.info/

45

Gradient Methods: Intuitive explanation 3

Imagine your hobby is blindfolded mountain climbing, i.e., someone
blindfolds you and puts you on the side of a mountain. Your goal is to
reach the peak of the mountain by feeling things out, e.g., moving in the
direction that feels upward until you reach the peak.

If mountain is concave, you will eventually reach your goal.

> Objective: Reach the maximum point (the peak) of the mountain.

» Gradient: The direction to move at each point to get closer to the point
(or your objective).

> Step Size: How much to move at each step (parameter).

3E><amp|e taken from Hal Daume IlI's book: http://ciml.info/

45

Gradient Ascent

v

v

v

Gradient ascent algorithm: (abstract form)

1: Initialize 69 to 0

2: While not converged do

3: Calculate §, = 37;2 fork =1,..d
4 Set each 0y = 0, + a * di

9: Return ¢

Goal: To find some maximum of a function.

Gradient dx: Direction to move each feature 0, to get closer to your
objective O (e.g., reaching the peak).

» line 3: in batch case uses full dataset to estimate.

a: learning rate or size of step to take (hyper-parameter).

46

Gradient Ascent: Computing the Gradients

> Dataset: Assume that we have our dataset D = {(x;, yi)}/_;, feature
vector 6¢
»> LCL Objective:

0) = log p(yi | xi; 0)
i=1

» Computing Gradient (using some calculus, full derivation not shown)

8 n
70,08 Py | xi0) = Zf Xisyn) = 2 p(y | xi:0)6 (i, y)

i=1 y'ey

47

Gradient Ascent: Computing the Gradients

Dataset: Assume that we have our dataset D = {(x;, yi)}/—;, feature
vector 6¢
LCL Objective:

0) = log p(yi | xi; 0)
i=1
Computing Gradient (using some calculus, full derivation not shown)

8 n
70,08 Py | xi0) = Zf Xisyn) = 2 p(y | xi:0)6 (i, y)

i=1 y'ey

The main formula for computing line 3 (last page):

» Empirical counts: The first half/summation above
» Expected counts: The second half.

47

Gradient Ascent: Computing the Gradients

» Computing Gradient (using some calculus, full derivation not shown)

8 n
3 ——log p(y | x;0) = Zf Xioyn) = Y > p(y | xi 0)fi(xi,y)

i=1 y'ey

Initialize 69 to O
While not converged do
Calculate 5 = gf;z fork =1,..d
Set each 0y = 0y + « * Ok
Return 69

o wh =

> Note: Making updates (line 4) first requires first iterating over our full

training training (line 3), is instance of batch learning.

48

Gradients: Zettlemoyer and Collins (2012)

> Recall that a CCG derivation is a pair (L, T)

> LCL objective (same objective, but a slightly different computation)
0) = Z log p(L;i | xi; 6)
i=1

= i log(Zp(L,—, T | X,-;G))

49

Gradients: Zettlemoyer and Collins (2012)

> Recall that a CCG derivation is a pair (L, T)

> LCL objective (same objective, but a slightly different computation)
0) = Z log p(L;i | xi; 6)
i=1

= i log(Zp(L,—, T | X,-;G))

» Computing Gradient:

o)
— 10
20, og p(y | x;0)

n n

=3 (L, Toxi)p(T | Liyxii0) = > > f(L T,x)p(L, T | x;;0)
-

i=1 i=1 L, T

49

Gradients: Zettlemoyer and Collins (2012)

» Computing Gradient:

é%/ogp(L | x:0)

n n

=N (L Tox)p(T | Lixii0) = > > AL T,)p(L, T | x:0)
i=1 T

i=1L,T

> Note: This involves find the probability of all trees/derivations and their

features given an input.

50

Gradients: Zettlemoyer and Collins (2012)

» Computing Gradient:

é%/ogp(L | x:0)

n n

=N (L Tox)p(T | Lixii0) = > > AL T,)p(L, T | x:0)
i=1 T

i=1L,T

> Note: This involves find the probability of all trees/derivations and their
features given an input.
» Dynamic programming: Use variant of inside-outside probabilities

covered in Lecture 3 (no big deal).

50

Batch vs. Stochastic Gradient Descent

» Batch Gradient

0
a—glogp (v x0)= Zf Xiy Yn)

. Initialize 69 to 0

=33 ply | xi: 0)fi(xiy)

i=1 y'ey

1
2: While not converged do

3: Calculate 6, = gTok fork =1,..d
4 Set each 0, = 0y + o * Ok

9: Return 69

» Stochastic Gradient

0
99,108 PU 1 x:0) = (s yn) =

> ply | xi:0)fi(xi, y)

y'ey

51

Batch vs. Stochastic Gradient Descent

» Batch Gradient

a%/ogp (v x0)= Zf Xisyn) = > Y ply | xi:0)fi(xi,y)
i=1y'ey
1: Initialize 9 to 0
2: While not converged do
3: Calculate 6, = % fork =1,..d
4 Set each 0, = 0y + o * Ok
9: Return ¢

» Stochastic Gradient

0
20, /0g Ply | x:0) = fi(xi; yn) — > ply | xi:0)fi(xi, y)
J y'ey

» Online learning: Updates are made at each example.

51

Stochastic Gradient Ascent: Full

> Dataset: Assume that we have our dataset D = {(x;, yi)}7_, feature

vector 69

- Initialize 69 to 0
: While not converged do
Repeat for i =1,..,n
O = Ok + a x (f(xi,yi) = Xoyey POV | Xi 0) (X, y))
: Return ¢

52

Stochastic Gradient Ascent: Full

> Dataset: Assume that we have our dataset D = {(x;, yi)}7_, feature

vector 69

- Initialize 69 to 0
: While not converged do
Repeat for i =1,..,n
O = Ok + a x (f(xi,yi) = Xoyey POV | Xi 0) (X, y))
: Return ¢

> line 3: Start iterating through dataset

> line 4: Update at each example for LCL objective

52

Stochastic Gradient Ascent: Full

> Dataset: Assume that we have our dataset D = {(x;, yi)}7_, feature

vector 69

- Initialize 69 to 0
: While not converged do
Repeat for i =1,..,n
O = Ok + a x (f(xi,yi) = Xoyey POV | Xi 0) (X, y))
: Return ¢

> line 3: Start iterating through dataset
> line 4: Update at each example for LCL objective

> The simplest form, vanilla gradient ascent.

52

Overall Model: Zettlemoyer and Collins (2012)

» Compositional Semantic Model: assumes the geo-query

representations and semantics we've discussed. v’

» Probabilistic Model: Deciding between different analyses, handling
spurious ambiguity. v’

> Lexical (Rule) Extraction: Finding set of CCG lexical entries in A.

53

GENLEX: Lexical rule extraction

» So far we have assumed the existence of a CCG lexical A

» GENLEX: Take a sentence and logical form and generates lexical items.

GENLEX(S,L) = {x:=y | x € W(S),y € C(L)}

> W(S): set of substrings in input S
» C(L): CCG rule templates or triggers

54

Lexical rule templates (Triggers)

[Rules | Categories produced from logical form
[Input Trigger Output Category | argmax(Az.state(z) A borders(z, texas), Az.size(z))
constant ¢ NP:c NP :texas
arity one predicate p1 N : Az.p1(z) N : Az.state(z)
arity one predicate py S\NP : Ax.pi(x) S\NP : \z.state(x)
arity two predicate po (S\NP)/NP : dx. \y.pa(y,) (S\NP)/NP : dz.\y.borders(y, ©)
arity two predicate pz (S\NP)/NP: Az.Ay.p2(z, y) (S\NP)/NP : Az.Ay.borders(z, y)

arity one predicate p;

N/N : xgXxzpi(z) A g(z)

NJN : Aghz.state(z) A g(x)

Titeral with arity two predicate pz
and constant second argument ¢

N/N : Ag.Az.pa(2,¢) A g(x)

N/N : Xg.Az.borders(x, texas) A g(x)

arity two predicate po

(N\N)/NP : Ax. g Ay.p2(z, y) A g(x)

(N\N)/NP : Ag. Az dy.borders(z, y) A g(x)

an arg max / min with second
argument arity one function f

NP/N : Ag.arg max / min(g, Az. f(z))

NP/N : Ag.arg max(g, \z.size(z))

an arity one
numeric-ranged function f

S/NP : \z.f(z)

S/NP : Az.size(x)

> Templates specify patterns in logical forms (input triggers) and their
mapping to CCG lexical entries (output category).

> Are hand-engineered (down side), which has been subsequently improved
on in Kwiatkowski et al. (2010)

55

Lexical rule templates: Example

Example: Oklahoma borders Texas.

borders(oklahoma', texas’)

56

Lexical rule templates: Example

Example: Oklahoma borders Texas.

borders(oklahoma', texas’)

> W(Oklahoma borders Texas) =

{" Oklahoma", " Texas",” Oklahoma borders", ...

}

56

Lexical rule templates: Example

Example: Oklahoma borders Texas.

borders(oklahoma', texas’)

> W(Oklahoma borders Texas) =
{" Oklahoma", " Texas",” Oklahoma borders”, ...}

> C(borders(oklahoma’,texas’)) = {borders(...) — (S\NP)/NP :
Ay, Ax.borders(x,y); texas’ — NP : texas’, ...}

» GENLEX: takes the combination of these.

56

Synthesis: Lexical Learning + Parameter Estimation

eFort=1...T

Step 1: (Lexical generation)
e Fori=1...n:
— Set A = Ao U GENLEX(S, Li).
— Calculate m = PARSE(S;, Li, A, 8").
— Define A; to be the set of lexical entries in .
o SetAy =AU M
Step 2: (Parameter Estimation)
o Set@' = ESTIMATE(A,, B, 6°1)

Qutput: Lexicon Ay together with parameters 87,

» Learning: Complete learning algorithm involves joining lexical learning

with log-linear parameter estimation (via stochastic gradient ascent)

> Big Idea: Learn compact lexicons via greedy iterative method that

works with high probability rules/derivations.

57

Synthesis: Lexical Learning + Parameter Estimation

sFort=1...T

Step 1: (Lexical generation)
e Fori=1...n:
— Set A = Ag U GENLEX(S,, L:).
— Calculate m = PARSE(S;, Li, A, 8" 1).
— Define A; to be the set of lexical entries in .
o Sty =AUl M
Step 2: (Parameter Estimation)
o Set§* = ESTIMATE(A,, E, 8 1)

Output: Lexicon Ay together with parameters 7.

> Step 1: Search for small set of lexical entries to parse data, then parse
and find most probable rules.

> Step 2: Re-estimate log-linear model based on these compact lexical

entries.

58

Results (brief)

Geo880 Jobs640
P R P R
Our Method | 96.25 | 79.29 | 97.36 | 79.29
COCKTAIL | 89.92 | 79.40 | 93.25 | 79.84

> Two benchmark datasets (still being used today).
> Highest results reported at the time of publishing.

> Quite impressive increases in precision (though not so impressive recall).

Conclusions and Take-aways

> Introduced (C)CG, a new formalism for semantic parsing.

» Lexicalism: lexical entries describe combination rules.
> Nice formalism for jointly modeling syntax-semantics.

60

Conclusions and Take-aways

> Introduced (C)CG, a new formalism for semantic parsing.
> Lexicalism: lexical entries describe combination rules.
> Nice formalism for jointly modeling syntax-semantics.
> Log-linear CCG model for parsing from Zettlemoyer and Collins (2012)

> Log-linear models: In particular, conditional log-linear model.
> Gradient methods: gradient-based optimization and (stochastic)
gradient ascent

60

Roadmap

> Next session: start of student resentations!
> 30 minutes each, plus 10-15 for questions.
> Due data: slides (or draft slides) must be submitted one week
advance for approval.
> Questions: | will submit specific question that | expect you to
address in your talk (not exam questions, only meant to help).
> Schedule update: | will give another lecture on the final class session

(another opportunity for writing a reading summary).

61

References |

Clark, S. and Curran, J. R. (2003). Log-linear models for wide-coverage ccg parsing.
In Proceedings of the 2003 conference on Empirical methods in natural language
processing, pages 97—104. Association for Computational Linguistics.

Domingos, P. (2012). A few useful things to know about machine learning.
Communications of the ACM, 55(10):78-87.

Huang, L. (2008). Forest reranking: Discriminative parsing with non-local features. In
ACL, pages 586-594.

Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., and Steedman, M. (2010). Inducing
probabilistic ccg grammars from logical form with higher-order unification. In
Proceedings of the 2010 conference on empirical methods in natural language
processing, pages 1223-1233. Association for Computational Linguistics.
http://www.aclweb.org/anthology/D/D10/D10-1119.pdf.

Steedman, M. (2000). The syntactic process, volume 24. MIT Press.

Woods, W. A. (1973). Progress in natural language understanding: an application to
lunar geology. In Proceedings of the June 4-8, 1973, National Computer
Conference and Exposition, pages 441-450.

Zettlemoyer, L. S. and Collins, M. (2012). Learning to map sentences to logical form:
Structured classification with probabilistic categorial grammars. arXiv preprint
arXiv:1207.1420. http://arxiv.org/abs/1207.1420.

62

