
Lecture 6: Learning from Denotations and
Entailments

Kyle Richardson

kyle@ims.uni-stuttgart.de

July 7, 2016

Lecture Plan

I Overview: Review of class topics and outstanding issues.

I General topics: Knowledge Representation, Learning from Entailment

2

The Big Picture (reminder)

I Standard processing pipeline

input sem

List samples that contain
every major element

world

JsemK ={S10019,S10059,...}

Semantic Parsing

Reasoning

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /

SAMPLE : (CONTAINS Y X);

(PRINTOUT Y)))

Knowledge Representation

Lunar QA system (Woods (1973))

3

Data-driven Semantic Parsing

I Goal: Given data, learn a function that can map any given input (x) to a

meaning representation (z).

I What kind of data do we learn from?

Supervision: Dataset Dinput x What state has the largest population?

sem z (argmax (�x . (state x) �x . (population x)))

Logical Forms: D = {(x
i

, z
i

)}N
i=1

Task: learn (latent) y, translation

Zettlemoyer and Collins (2009)

Kwiatkowski et al. (2010)

world JzK California

Denotations: D = {(x
j

, Jz
j

K)}N
i=1

Task: learn z,y, program synthesis

Liang et al. (2013)

Berant et al. (2013)

y

Geoquery Corpus (Zelle and Mooney (1996))
4

Question Today

I How do these di↵erent subproblems interact?

input sem

List samples that contain
every major element

world

JsemK ={S10019,S10059,...}

Semantic Parsing

Reasoning

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /

SAMPLE : (CONTAINS Y X);

(PRINTOUT Y)))

Knowledge Representation

Lunar QA system (Woods (1973))

5

Learning from Logical Forms: CCG Example

I Data: (Oklahoma borders Texas, borders’(oklahoma’,texas’))

I Latent Variable: CCG derivations, Probability distribution over

derivations.

Oklahoma

NP : oklahoma’

borders

(S\NP)/NP : �y ,�x .borders(x , y)

Texas

NP : texas’

(>)

S\NP : �x .borders(x , texas0)

(<)

S : borders(oklahoma’,texas’) X

6

Learning from Logical Forms: CCG Example

I Data: (Oklahoma borders Texas, borders’(oklahoma’,texas’))

I Latent Variable: CCG derivations, Probability distribution over

derivations.

Oklahoma

NP : ohio’

borders

(S\NP)/NP : �y ,�x .borders(x , y)

Texas

NP : texas’

(>)

S\NP : �x .borders(x , texas0)

(<)

S : borders(ohio’,texas’) ⇥

7

Learning from Logical Forms: CCG Example

I Data: (Oklahoma borders Texas, borders’(oklahoma’,texas’))

I Latent Variable: CCG derivations, Probability distribution over

derivations.

Oklahoma

NP : oklahoma’

borders

NP : texas’

Texas

(S\NP)/NP : �y ,�x .borders(x , y)

(<)

S\NP : �x .borders(x , texas0)

(<)

S : borders(oklahoma’,texas’) X

8

Learning from Logical Forms: Compositional Model

Oklahoma

NP : oklahoma’

borders

(S\NP)/NP : �y ,�x .borders(x , y)

Texas

NP : texas’

(>)

S\NP : �x .borders(x , texas0)

(<)

S : borders(oklahoma’,texas’) X

Prelude > let borders ::([Char],[Char]) -> Bool;

Prelude | borders a = (elem a [("oklahoma","texas"), ...])

Prelude > borders ("nh","texas")

=> False

9

Learning from Logical Forms: Compositional Model

Oklahoma

NP : oklahoma’

borders

(S\NP)/NP : �y ,�x .borders(x , y)

Texas

NP : texas’

(>)

S\NP : �x .borders(x , texas0)

(<)

S : borders(oklahoma’,texas’) X

Prelude > :type borders

=> borders :: ([Char], [Char]) -> Bool

Prelude > let borders c = curry borders

Prelude > :type borders c

=> borders c :: [Char] -> [Char] -> Bool

semantic type: e �! e �! t

10

Learning from Logical Forms: Compositional Model

Oklahoma

NP : oklahoma’

borders

(S\NP)/NP : �y ,�x .borders(x , y)

Texas

NP : texas’

(>)

S\NP : �x .borders(x , texas0)

(<)

S : borders(oklahoma’,texas’) X

Prelude > :type borders

=> borders :: ([Char], [Char]) -> Bool

Prelude > let borders c = curry borders

Prelude > :type borders c

=> borders c :: [Char] -> [Char] -> Bool

semantic type: e �! e �! t

10

Lexical rule templates (Triggers)

I Templates: Extracting CCG entries from example logical forms, does not

work without target logical forms.

I Having logical forms keeps the space of rules/programs feasible.

11

Lexical rule templates (Triggers)

I Templates: Extracting CCG entries from example logical forms, does not

work without target logical forms.

I Having logical forms keeps the space of rules/programs feasible.

�x .state(x) ^ borders(x , texas)

#

NP : texas

(S\NP)/NP : �y�x .borders(x , y)
S\N : �x .state(x)

12

Lexical rule templates (Triggers)

I Templates: Extracting CCG entries from example logical forms, does not

work without target logical forms.

I Having logical forms keeps the space of rules/programs feasible.

�x .state(x) ^ borders(x , texas)

#
NP : texas

(S\NP)/NP : �y�x .borders(x , y)
S\N : �x .state(x)

12

Lexical rule templates (Triggers)

I Templates: Extracting CCG entries from example logical forms, does not

work without target logical forms.

I Having logical forms keeps the space of rules/programs feasible.

�x .state(x) ^ borders(x , texas)

#
NP : texas

(S\NP)/NP : �y�x .borders(x , y)

S\N : �x .state(x)

12

Lexical rule templates (Triggers)

I Templates: Extracting CCG entries from example logical forms, does not

work without target logical forms.

I Having logical forms keeps the space of rules/programs feasible.

�x .state(x) ^ borders(x , texas)

#
NP : texas

(S\NP)/NP : �y�x .borders(x , y)
S\N : �x .state(x)

12

Assumptions for CCG approach

I Logical Form: for each input, e.g.,

�x .state(x) ^ borders(x , texas)

I Implementation: Programs that implement domain model.

I Seed Lexicon: Initial set of CCG lexical entries.

Texas := NP : texas

border := (S\NP)/NP : �y�x .borders(x , y)
states := S\N : �x .state(x)
which := (S/(S\NP))/N : �f ,�g ,�x .f (x) ^ g(x)
Texas := (S/(S\NP))/N : �f ,�g ,�x .f (x) ^ g(x)
border := S\N : �x .state(x)
...

13

Learning from Logical Forms: General Properties

I Goal: Learn to translate to logical forms using example sentences with

target logical representations.

I Critical: Having example logical forms limits the space of mappings and

translation rules.

I The types of models often used are indi↵erent to the types of

representations used.

14

Learning from Denotations

I Alternative approach to learning, only needs example input/output
(requires a background database of facts).

I Logical forms: (two times two plus three, (plus (mult 2 2) 3))
I Denotations: (two times two plus three, 7)

I Di↵erence: In the second case, the logical representation is a latent

variables (not only the translation), no program implementation.

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mul

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

15

Learning from Denotations

I Alternative approach to learning, only needs example input/output
(requires a background database of facts).

I Logical forms: (two times two plus three, (plus (mult 2 2) 3))
I Denotations: (two times two plus three, 7)

I Di↵erence: In the second case, the logical representation is a latent

variables (not only the translation), no program implementation.

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mul

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

15

Learning from Denotations

I Alternative approach to learning, only needs example input/output
(requires a background database of facts).

I Logical forms: (two times two plus three, (plus (mult 2 2) 3))
I Denotations: (two times two plus three, 7)

I Di↵erence: In the second case, the logical representation is a latent

variables (not only the translation), no program implementation.

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mul

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

15

Learning from Denotations

I Alternative approach to learning, only needs example input/output
(requires a background database of facts).

I Logical forms: (two times two plus three, (plus (mult 2 2) 3))
I Denotations: (two times two plus three, 7)

I Di↵erence: In the second case, the logical representation is a latent

variables (not only the translation), no program implementation.

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mul

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

15

Learning from Denotations

I Alternative approach to learning, only needs example input/output
(requires a background database of facts).

I Logical forms: (two times two plus three, (plus (mult 2 2) 3))
I Denotations: (two times two plus three, 7)

I Why: Avoids annotation (practical/methodological), can we learn

programs from input/output? (scientific)

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mul

times

N : 2

two

N: (plus (plus 2 2) 3)

N : 3

three

R : plus

plus

N : (plus 2 2)

N : 2

two

R : plus

times

N : 2

two

16

Learning from Denotations (Liang et al. (2011))

I Computational Problem: Requires exploring an exponential space of

possible representations and programs:1

Input: What is the most populous city in California?

#
�x .city(x)

#
Answer: Los Angeles

1
Examples throughout adapted from Percy Liang’s slides

17

Learning from Denotations (Liang et al. (2011))

I Computational Problem: Requires exploring an exponential space of

possible representations and programs:

Input: What is the most populous city in California?

#
�x .city(x) ^ loc(x ,CA)

#
Answer: Los Angeles

18

Learning from Denotations (Liang et al. (2011))

I Computational Problem: Requires exploring an exponential space of

possible representations and programs:

Input: What is the most populous city in California?

#
�x .state(x) ^ border(x ,CA)

#
Answer: Los Angeles

19

Learning from Denotations (Liang et al. (2011))

I Computational Problem: Requires exploring an exponential space of

possible representations and programs:

Input: What is the most populous city in California?

#
argmax(�x .city(x) ^ loc(x ,CA),�x .population(x)))

#
Answer: Los Angeles

20

Learning from Denotations (Liang et al. (2011))

I Computational Problem: Requires exploring an exponential space of

possible representations and programs:

Input: What is the most populous city in California?

#
... LF, LF, LF, LF, LF LF LF LF LF LF, LF, LF, LF, LF, LF, LF ...

#
Answer: Los Angeles

21

Why exponential?

I Geoquery: Answering questions about American geography.

I World: or domain of discourse is a database consisting of predicates.

Input: A city located in California.

#
?

#
Answer: San Francisco

city

San Francisco

Chicago

New York

....

loc

Manhattan New York

San Francisco California

Chicago Illinois

... ...

22

Why exponential?

I Geoquery: Answering questions about American geography.

I World: or domain of discourse is a database consisting of predicates.

Input: A city located in California.

#
?

#
Answer: San Francisco

city

San Francisco

Chicago

New York

....

loc

Manhattan New York

San Francisco California

Chicago Illinois

... ...

22

Why exponential?

I Geoquery: Answering questions about American geography.

I World: or domain of discourse is a database consisting of predicates.

Input: A city located in California.

#
�x .city(x)

#
Answer: San Francisco

city

San Francisco

Chicago

New York

....

loc

Manhattan New York

San Francisco California

Chicago Illinois

... ...

23

Why exponential?

I Geoquery: Answering questions about American geography.

I Simple case: only unary predicates. What is the search space?

Input: A city located in California.

#
�x .city(x)

#
Answer: San Francisco

city

San Francisco

Chicago

New York

....

loc

Manhattan New York

San Francisco California

Chicago Illinois

... ...

24

Why exponential?

I Geoquery: Answering questions about American geography.

I Disjunction: In this case, imposes constraint on equality.

Input: A city located in California.

#
�x .city(x) ^ loc(x,California)

#
Answer: San Francisco

city

San Francisco

Chicago

New York

....

loc

Manhattan New York

San Francisco California

Chicago Illinois

... ...

25

Why exponential?

I Geoquery: Answering questions about American geography.

I Next stage: Unary+Binary. What is the search space?.

Input: A city located in California.

#
�x .city(x) ^ loc(x,California)

#
Answer: San Francisco

city

San Francisco

Chicago

New York

....

loc

Manhattan New York

San Francisco California

Chicago Illinois

... ...

26

Why exponential?

I Geoquery: Answering questions about American geography.

I Unrestrained: What is the search space?.

Input: A city located in California.

#
�x .city(x) ^ loc(x,California) ^ P1(x,Y) ^ P2(x,Y) ^ ^ ...

#
Answer: San Francisco

city

San Francisco

Chicago

New York

....

loc

Manhattan New York

San Francisco California

Chicago Illinois

... ...

27

Learning from Denotations and Knowledge Representation

I The search space for unrestricted lambda calculus logical forms is too
large to search.

I Consider set of predicates P ={loc,city, borders, ...} of size
n, the set of disjunctions is 2n (equal to the powerset of P)

250 = 1, 125, 899, 906, 842, 624

I We cannot rely on example logical forms to constrain the space.

I Solution (Liang et al. (2011)): Develop a constrained version of lambda

calculus, simplifies representations, tree structured

28

Learning from Denotations and Knowledge Representation

I The search space for unrestricted lambda calculus logical forms is too
large to search.

I Consider set of predicates P ={loc,city, borders, ...} of size
n, the set of disjunctions is 2n (equal to the powerset of P)

250 = 1, 125, 899, 906, 842, 624

I We cannot rely on example logical forms to constrain the space.

I Solution (Liang et al. (2011)): Develop a constrained version of lambda

calculus, simplifies representations, tree structured

28

Learning from Denotations and Knowledge Representation

I The search space for unrestricted lambda calculus logical forms is too
large to search.

I Consider set of predicates P ={loc,city, borders, ...} of size
n, the set of disjunctions is 2n (equal to the powerset of P)

250 = 1, 125, 899, 906, 842, 624

I We cannot rely on example logical forms to constrain the space.

I Solution (Liang et al. (2011)): Develop a constrained version of lambda

calculus, simplifies representations, tree structured

28

Learning from Denotations and Knowledge Representation

I The search space for unrestricted lambda calculus logical forms is too
large to search.

I Consider set of predicates P ={loc,city, borders, ...} of size
n, the set of disjunctions is 2n (equal to the powerset of P)

250 = 1, 125, 899, 906, 842, 624

I We cannot rely on example logical forms to constrain the space.

I Solution (Liang et al. (2011)): Develop a constrained version of lambda

calculus, simplifies representations, tree structured

28

DCS Language (Liang et al. (2011))
I Tree structured, nodes are predicates and edges are relations.
I Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation Constraints World

city

loc

CA

1
1

2
1

city

San Francisco

Chicago

New York

....

loc

Manhattan New York

San Francisco California

Chicago Illinois

... ...

CA

California

29

DCS Language (Liang et al. (2011))
I Tree structured, nodes are predicates and edges are relations.
I Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation Constraints World

city

loc

CA

1
1

2
1

c 2 city

l 2 loc

s 2 CA

city

San Francisco

Chicago

New York

....

loc

Manhattan New York

San Francisco California

Chicago Illinois

... ...

CA

California

30

DCS Language (Liang et al. (2011))
I Tree structured, nodes are predicates and edges are relations.
I Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation Constraints World

city

loc

CA

1
1

2
1

c 2 city

l 2 loc

s 2 CA

c1 = l1

l2 = s1

city

San Francisco

Chicago

New York

....

loc

Manhattan New York

San Francisco California

Chicago Illinois

... ...

CA

California

31

DCS Language (Liang et al. (2011))

I Tree structured, nodes are predicates and edges are relations.

I Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation Constraints

city

loc

CA

1
1

2
1

c 2 city

l 2 loc

s 2 CA

c1 = l1

l2 = s1

Expansion: �c.9l .9s.city(c) ^ loc(l ,CA) ^ CA(s) ^ c1 = l1 ^ l2 = s1

32

DCS Language (Liang et al. (2011))

I Tree structured, nodes are predicates and edges are relations.

I Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation Constraints

city

loc

CA

1
1

2
1

c 2 city

l 2 loc

s 2 CA

c1 = l1

l2 = s1

Expansion: �c.9l .9s.city(c) ^ loc(l ,CA) ^ CA(s) ^ c1 = l1 ^ l2 = s1

32

DCS Language: Another Join Example

I Defines a constraint satisfaction problem (CSP)

I Computing constraints can be done in linear time using dynamic

programming.

I Tree structure: Keeps computation and search tractable, why?

33

DCS Language: Another Join Example

I Defines a constraint satisfaction problem (CSP)

I Computing constraints can be done in linear time using dynamic

programming.

I Tree structure: Keeps computation and search tractable, why?

33

DCS Language: Other Relations

I 5 other relations: aggregate, execute, extract, quantify, compare.

I Aggregate relation: captures higher-order phenomena that go beyond

basic CSPs.

34

Comparison with Lambda Calculus (again)

Lambda Calculus DCS

Formulae

�x .city(x) ^ loc(x , CA)

Predicates

�x .state(x) state

�x .�y .borders(x , y) border

�p.�x .p(x) ^major(x) major

Functions

�g .argmax(g ,�x .size(x)) argmax

35

Instantiating Predicates and Generating Trees

CA

The most populous city in CA

I String Match: between words and predicate names.

36

Instantiating Predicates and Generating Trees

argmax CA

The most populous city in CA

I String Match: between words and predicate names.

I Function Words: small lexicon of function words.

37

Instantiating Predicates and Generating Trees

city city

state state

argmax population population CA

The most populous city in CA

I String Match: between words and predicate names.

I Function Words: small lexicon of function words.

I Pos Tags: Find nouns and adjectives.

I k-best parsing: enumerate trees using k-best parser, update on good

trees using variant of EM (by now a typical approach)

38

Instantiating Predicates and Generating Trees

city city

state state

argmax population population CA

The most populous city in CA

I String Match: between words and predicate names.

I Function Words: small lexicon of function words.

I Pos Tags: Find nouns and adjectives.

I k-best parsing: enumerate trees using k-best parser, update on good

trees using variant of EM (by now a typical approach)

38

Learning and Knowledge Representation

I Big Idea: Learning puts certain constraints on knowledge representation.

I Theoretical Question: What representations are needed to make the
semantic learning problem tractable?

I Learning from Logical Form: Generally agnostic to such
questions, having target representations enforces constraints.

I Learning from Denotation: Is more sensitive to type of
knowledge representation, hard computational problem.

I Liang et al. (2011): Choose a simplified, more domain specific, version of

lambda calculus, reduce to constraint satisfaction problem.

39

Learning and Knowledge Representation

I Big Idea: Learning puts certain constraints on knowledge representation.

I Theoretical Question: What representations are needed to make the
semantic learning problem tractable?

I Learning from Logical Form: Generally agnostic to such
questions, having target representations enforces constraints.

I Learning from Denotation: Is more sensitive to type of
knowledge representation, hard computational problem.

I Liang et al. (2011): Choose a simplified, more domain specific, version of

lambda calculus, reduce to constraint satisfaction problem.

39

Learning and Knowledge Representation

I Big Idea: Learning puts certain constraints on knowledge representation.

I Theoretical Question: What representations are needed to make the
semantic learning problem tractable?

I Learning from Logical Form: Generally agnostic to such
questions, having target representations enforces constraints.

I Learning from Denotation: Is more sensitive to type of
knowledge representation, hard computational problem.

I Liang et al. (2011): Choose a simplified, more domain specific, version of

lambda calculus, reduce to constraint satisfaction problem.

39

What about Reasoning?

I How do these di↵erent subproblems interact?

input sem

List samples that contain
every major element

world

JsemK ={S10019,S10059,...}

Semantic Parsing

Reasoning

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /

SAMPLE : (CONTAINS Y X);

(PRINTOUT Y)))

Knowledge Representation

Lunar QA system (Woods (1973))

40

What about Reasoning?

I How do these di↵erent subproblems interact?

input sem

List all samples that contain
every major element

!
List some sample that contains
every major element

world

JsemK ={S10019,S10059,...} ◆ {S10019}

Semantic Parsing

Reasoning

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /

SAMPLE : (CONTAINS Y X);

(PRINTOUT Y)))

Knowledge Representation

41

Recognizing Textual Entailment (RTE)

I Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: Norway’s most famous painting, ’The Scream’ by Edward Munch,

Hypothesis: Edward Much painted ’The Scream’

True

42

Recognizing Textual Entailment (RTE)

I Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: Norway’s most famous painting, ’The Scream’ by Edward Munch,

Hypothesis: Edward Much painted ’The Scream’

True

42

Recognizing Textual Entailment (RTE)

I Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: Google files for its long awaited IPO

Hypothesis: Google goes public

True

43

Recognizing Textual Entailment (RTE)

I Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: The president of Norway made an o�cial visit to the United States

Hypothesis: Angela Merkel yesterday visited the United States.

False/Uncertain

44

Recognizing Textual Entailment (RTE)

I Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: The president of Norway made an o�cial visit to the United States

Hypothesis: Angela Merkel yesterday visited the United States.

False/Uncertain

I ”The basic aim of semantics is to characterize the notions of a true

sentence .. and of entailment” Montague (1970)

I A type of Turing test, minimal requirement for intelligence.

45

Recognizing Textual Entailment (RTE)

I Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: The president of Norway made an o�cial visit to the United States

Hypothesis: Angela Merkel yesterday visited the United States.

False/Uncertain

I ”The basic aim of semantics is to characterize the notions of a true

sentence .. and of entailment” Montague (1970)

I A type of Turing test, minimal requirement for intelligence.

45

Recognizing Textual Entailment (RTE)

I Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: The president of Norway made an o�cial visit to the United States

Hypothesis: Angela Merkel yesterday visited the United States.

False/Uncertain

I ”The basic aim of semantics is to characterize the notions of a true

sentence .. and of entailment” Montague (1970)

I A type of Turing test, minimal requirement for intelligence.

45

Learning to Sportscast

I Learning from “grounded” supervision.

I Minimal annotation e↵ort.

Supervision: Dataset D
input x Pink3 quickly passes over to pink7

sem z ⇠ JzK {pass(pink3 , pink7),...}
Event Streams: D = {(x

i

, {z1, ...z
k

})}N
i=1

Task: learn (latent) y, translation

Chen and Mooney (2008)

world JzK

2

3

4

1

6

7

8

9

10

11
4

2

3

1

5

67
8

9
10

y

Game Simulator

Sportscaster corpus (Chen and Mooney (2008))

46

Requirements for Semantic Representations

I Minimal requirement: Semantic parser should be able to recognize

certain types of inferences.

Text Input Hypotheses Entailments

input t: Pink3 quickly kicks to Pink7
?�!

h1: pink3 kicks the ball

h2: pink3 blocks ball

h3: pink3 passes near midfield

Entail

Contradict

Unknown

sem z: pass(pink3,pink7)

world JzK

2

3

4

1

6

7

8

9

10

11
4

2

3

1

5

67
8

9
10 h1

¬h2

?h3

47

Learning from Entailment (Richardson and Kuhn (2016))

I Goal: Use textual entailment judgements as weak supervision to help

train a semantic parser.

I Learn more precise representations and domain knowledge, account for

inferential patterns.

Text Input Hypotheses Entailments

input t: Pink3 quickly kicks to Pink7
?�!

h1: pink3 kicks the ball

h2: pink3 blocks ball

h2: pink3 passes near midfield

Entail

Contradict

Unknown

sem z: pass(pink3,pink7)

world JzK

2

3

4

1

6

7

8

9

10

11
4

2

3

1

5

67
8

9
10 h1

¬h2

?h2

48

Motivation: Crude Representations

I Target representations are not expressive, underspecified

I Not based on background logical theory (no knowledge)

Entailment

Text t Hypothesis h

t!h

h!t

Naive (do reps match?)

1.

Pink 3 quickly kicks

to pink 1
pass(pink3,pink1)

Pink 3 kicks over to

pink 1 near midfield
pass(pink3,pink1)

Unknown

Unknown
Entail

2.

Purple player 10

kicks the ball
kick(purple10)

Purple 10 again

shoots for the goal
kick(purple10)

Unknown

Entail
Entail

I Desiderata: explicit treatment of modifiers

49

Motivation: Missing Knowledge

I Target representations are not expressive, underspecified.

I Not based on background logical theory (no knowledge)

Entailment

Text t Hypothesis h

t!h

h!t

Naive (do reps match?)

3.
Pink 10 kicks the

ball kick(pink10)

Pink 10 passes over

to pink1
pass(pink10,pink1)

Unknown

Entail
Contr.

4.

Purple 7 makes a

long kick
kick(purple7)

Purple team scores

another goal
playmode(goal l)

Unknown

Unknown
Contr.

I Desiderata: explicit treatment of modifiers, sense distinctions, abstract

relations between symbols

50

Learning from Entailment

I Entailments are used to reason about target symbols and find holes in the

analyses.

input: (t,h) t pink3 � passes to pink1

a

h pink3 quickly kicks �

y
pink3 ⌘ pink3

I
pink3 ⌘ pink3

� wv
c

I
� w quickly

pass v kick, pink1 v �
./

passes to pink1 v kicks
./

passes to pink 1 # quickly kicks
./

pink3 passes to pink1 # pink3 quickly kicks

sem z Uncertain

world

pink3/pink3

�/w
c

pass/kick

pink1/�

Data: D = {((t, h)
i

, z
i

)}N
i=1, Task: learn (latent) proof y

51

Learning from Entailment

I Entailments are used to reason about target symbols and find holes in the

analyses.

input: (t,h) t pink3 � passes to pink1

a

h pink3 quickly kicks �

y
pink3 ⌘ pink3

I
pink3 ⌘ pink3

� wv
c

I
� w quickly

pass v kick, pink1 v �
./

passes to pink1 v kicks
./

passes to pink 1 # quickly kicks
./

pink3 passes to pink1 # pink3 quickly kicks

sem z Uncertain

world

pink3/pink3

�/w
c

pass/kick

pink1/�

Data: D = {((t, h)
i

, z
i

)}N
i=1, Task: learn (latent) proof y

52

Learning from Entailment

I Entailments are used to reason about target symbols and find holes in the

analyses.

input: (t,h) t pink3 � passes to pink1

a

h pink3 quickly kicks �

y
pink3 ⌘ pink3

I
pink3 ⌘ pink3

� wv
c

I
� w quickly

pass v kick, pink1 v �
./

passes to pink1 v kicks
./

passes to pink 1 # quickly kicks
./

pink3 passes to pink1 # pink3 quickly kicks

sem z Uncertain

world

pink3/pink3

�/w
c

pass/kick

pink1/�

Data: D = {((t, h)
i

, z
i

)}N
i=1, Task: learn (latent) proof y

53

Learning from Entailment

I Entailments are used to reason about target symbols and find holes in the

analyses.

input: (t,h) t pink3 � passes to pink1

a

h pink3 quickly kicks �

y
pink3 ⌘ pink3

I
pink3 ⌘ pink3

� wv
c

I
� w quickly

pass v kick, pink1 v �
./

passes to pink1 v kicks
./

passes to pink 1 # quickly kicks
./

pink3 passes to pink1 # pink3 quickly kicks

sem z Uncertain

world

pink3/pink3

�/w
c

pass/kick

pink1/�

Data: D = {((t, h)
i

, z
i

)}N
i=1, Task: learn (latent) proof y

54

Learning from Entailment

I Entailments are used to reason about target symbols and find holes in the

analyses.

input: (t,h) t pink3 � passes to pink1

a

h pink3 quickly kicks �

y
pink3 ⌘ pink3

I
pink3 ⌘ pink3

� wv
c

I
� w quickly

pass v kick, pink1 v �
./

passes to pink1 v kicks
./

passes to pink 1 # quickly kicks
./

pink3 passes to pink1 # pink3 quickly kicks

sem z Uncertain

world

pink3/pink3

�/w
c

pass/kick

pink1/�

Data: D = {((t, h)
i

, z
i

)}N
i=1, Task: learn (latent) proof y

55

Learning from Entailment: Proofs

pink3 ⌘ pink3
I

pink3 ⌘ pink3

� wv
c

I
� w quickly

pass v kick, pink1 v �
./

passes to pink1 v kicks
./

passes to pink 1 # quickly kicks
./

pink3 passes to pink1 # pink3 quickly kicks

I Logical inference: requires logical inference, in this case using the
natural logic calculus (MacCartney and Manning (2009)).

I
I : axioms, set-theoretic relations between symbols.

pass v kick

pass

kick

56

Learning from Entailment: Proofs

pink3 ⌘ pink3
I

pink3 ⌘ pink3

� wv
c

I
� w quickly

pass v kick, pink1 v �
./

passes to pink1 v kicks
./

passes to pink 1 # quickly kicks
./

pink3 passes to pink1 # pink3 quickly kicks

I Logical inference: requires logical inference, in this case using the
natural logic calculus (MacCartney and Manning (2009)).

I
I : axioms, set-theoretic relations between symbols.

pass v kick

pass

kick

56

Learning from Entailment: Proofs

pink3 ⌘ pink3
I

pink3 ⌘ pink3

� wv
c

I
� w quickly

pass v kick, pink1 v �
./

passes to pink1v kicks
./

passes to pink 1 # quickly kicks
./

pink3 passes to pink1 # pink3 quickly kicks

I Logical inference: requires logical inference, in this case using the
natural logic calcluls (MacCartney and Manning (2009); Icard III (2012)).

I
I : axioms, set-theoretic relations between symbols.

I ./: natural logic join inference rule

v ./ v=v

57

Learning from Entailment: Proofs

pink3 ⌘ pink3
I

pink3 ⌘ pink3

� wv
c

I
� w quickly

pass v kick, pink1 v �
./

passes to pink1v kicks
./

passes to pink 1 # quickly kicks
./

pink3 passes to pink1 # pink3 quickly kicks

I Logical inference: requires logical inference, in this case using the
natural logic calcluls (MacCartney and Manning (2009); Icard III (2012)).

I
I : axioms, set-theoretic relations between symbols.

I ./: natural logic inference rules, algebraic

I Latent variable: axioms or relations, inference rules are constant.

58

Outline of Approach

I Step 1: Learn a base semantic parser on normal data (i.e. sentences !
logic) using a PCFG approach

I Step 2: Retrain on inference pairs using extended inference grammar

(i.e. sentences ! logic, pairs ! proofs).

I What’s needed: inference dataset, logical calculus and learning

algorithm.

I For this talk, let’s assume that we have already learned a semantic

grammar.

59

Outline of Approach

I Step 1: Learn a base semantic parser on normal data (i.e. sentences !
logic) using a PCFG approach

I Step 2: Retrain on inference pairs using extended inference grammar

(i.e. sentences ! logic, pairs ! proofs).

I What’s needed: inference dataset, logical calculus and learning

algorithm.

I For this talk, let’s assume that we have already learned a semantic

grammar.

59

Pairs to Proofs

I Going from pairs of text to proofs.

I two components: semantic relations, inference rules (joins and functions).

Transform t into h.

((t: purple7 kicks the ball, h: purple team scores a goal), Uncertain)

transform. kick

sub.��! score purple7

sub.��! purple team

relation.

score

kick

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference

60

Pairs to Proofs

I Going from pairs of text to proofs.

I two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple7 kicks the ball, h: purple team scores a goal), Uncertain)

transform. kick

sub.��! score purple7

sub.��! purple team

relation. w v

score

kick

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference

symbol definition
v x ⇢ y

w x � y

⌘ x = y

| neg.

other

61

Pairs to Proofs

I Going from pairs of text to proofs.

I two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple7 kicks the ball, h: purple team scores a goal), Uncertain)

transform. kick

sub.��! score purple7

sub.��! purple team

relation. w v

score

kick

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference (w ./v) = #(Uncertain)

symbol definition
v x ⇢ y

w x � y

⌘ x = y

| neg.

other

./ ⌘ v w | #
⌘ ⌘ v w | #
v v v # | #
w w # w # #
| | # | # #
#

62

Pairs to Proofs

I Going from pairs of text to proofs.

I two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple7 kicks the ball, h: purple team scores a goal), Uncertain)

transform. kick

sub.��! score purple7

sub.��! purple team

relation. w w

score

kick

7 purple

pur7

4

7

3
1

5
62

8

9
10

inference (w ./w) =w (Uncertain)

symbol definition
v x ⇢ y

w x � y

⌘ x = y

| neg.

other

./ ⌘ v w | #
⌘ ⌘ v w | #
v v v # | #
w w # w # #
| | # | # #
#

63

Pairs to Proofs

I Going from pairs of text to proofs.

I two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple7 scores a goal, h: purple7 kicks the ball), Entail)

transform. score

sub.��! kick purple7

sub.��! purple7

relation. v ⌘

score

kick

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference (v ./⌘) =v (Entail)

./ ⌘ v w | #
⌘ ⌘ v w | #
v v v # | #
w w # w # #
| | # | # #
#

64

Pairs to Proofs

I Going from pairs of text to proofs.

I two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple7 scores a goal, h: purple7 kicks the ball again), Uncertain)

transform. score

sub.��! kick �
ins.��!v

c

purple7

sub.��! purple7

relation. v w ⌘

score

kick

v./w= #

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference (# ./⌘) = #(Uncertain)

modifier

./ ⌘ v w | #
⌘ ⌘ v w | #
v v v # | #
w w # w # #
| | # | # #
#

65

Pairs to Proofs

I Going from pairs of text to proofs.

I two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple7 scores a goal again, h: purple7 kicks the ball), Entail)

transform. score

sub.��! kick v
c

del.��! � purple7

sub.��! purple7

relation. v v ⌘

score

kick

v./v=v

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference (v ./⌘) =v (Entail)

modifier

./ ⌘ v w | #
⌘ ⌘ v w | #
v v v # | #
w w # w # #
| | # | # #
#

66

Pairs to Proofs

I Going from pairs of text to proofs.

I two components: semantic relations, inference rules (joins
and functions). Transform t into h.

((t: purple7 scores a goal, h: purple7 kicks the ball), Entail)

transform. score

sub.��! kick �
ins.��!⌘

c

purple7

sub.��! purple7

relation. v ⌘ ⌘

score

kick

v./⌘=v

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference (v ./⌘) =v (Entail)

modifier

./ ⌘ v w | #
⌘ ⌘ v w | #
v v v # | #
w w # w # #
| | # | # #
#

67

Pairs to Proofs

I Going from pairs of text to proofs.

I two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple7 kicks, h: purple7 shoots for the goal), Uncertin)

transform. kick

sub.��! kick 1 purple7

sub.��! purple7

relation. w ⌘

score

kick

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference (w ./⌘) =w (Uncertain)

./ ⌘ v w | #
⌘ ⌘ v w | #
v v v # | #
w w # w # #
| | # | # #
#

68

Learning from Entailment: General Idea

I Generating proofs is done jointly with learning an ordinary semantic

parser, both help each other.

I Learning is done using a version of the EM algorithm.

pink 3 kicks kick(pink3)

x y z

input d world

x = (t, h) y z

(pink 3 kicks,pink team kicks)
v./⌘play-intr=v

⌘
play�intr.

kick/kick

kicks/kicks

v
player

arg1

pink3/pink team

pink 3/pink team

Entail

judgement

pink3/pink team kicks/kicks

Parsing Model ✓

Semantic/Inference Grammar

Interpretation

|! Contradict

alignment

69

Learning from Entailment: General Idea

I Generating proofs is done jointly with learning an ordinary semantic

parser, both help each other.

I Learning is done using a version of the EM algorithm.

pink 3 kicks kick(pink3)

x y z

input d world

x = (t, h) y z

(pink 3 kicks,pink team kicks)
v./⌘play-intr=v

⌘
play�intr.

kick/kick

kicks/kicks

v
player

arg1

pink3/pink team

pink 3/pink team

Entail

judgement

pink3/pink team kicks/kicks

Parsing Model ✓

Semantic/Inference Grammar

Interpretation

|! Contradict

alignment

69

Learned knowledge

I Learned lexical relations from example proof trees.

(t, h): (pink team is o↵sides,purple 9 passes) (bad pass.., loses the ball to)

analysis:

|
team

arg1

substitute

pink team/purple9

“pink team’/“purple 9”

vplay-tran

substitute

bad pass/turnover

“bad pass .. picked o↵ by”/“loses the ball to”

relation: pink team | purple9 bad pass v turnover

(t, h): (free kick for, steals the ball from) (purple 6 kicks to,purple 6 kicks)

analysis:

|game-play

substitute

free kick/steal

“free kick for”/“steals the ball from”

vplay-tran.

substitute

pass/kick

“kicks to”/“kicks’

relation: free kick| steal pass v kick

70

Learned knowledge

I Learned modifiers from example proof trees.

(t, h): (a beautiful pass to,passes to) (gets a free kick,freekick from the)

analysis:

vc ./⌘play-tran=vplay-tran

modifier
⌘play-tran.

pass/pass

“pass to’/“passes to”

vc

vc /�

“a beautiful”/�

⌘c ./⌘game-play=⌘game-play

modifier
⌘game-play

freekick/freekick

“free kick” / “freekick from the”

⌘c

⌘c /�

“gets a”/�

generalization: beautiful(X) v X get(X) ⌘ X

(t, h): (yet again passes to,kicks to) (purple 10,purple 10 who is out front)

analysis:

vc ./⌘play-tran.=vplay-tran

modifier

⌘play-tran.

pass/pass

“passes to”/“kicks to”

vc

vc /�

“yet again”/�

⌘
player

arg2 ./wc=w
player

arg2

modifier

wc

�/ vc

�/“who is out front”

⌘
player

arg2

purple10/purple10

“purple 10”/“purple 10”

generalization: yet-again(X) v X X w out front(X)

71

Conclusions

I Tried to fill in the gaps in this overall pipeline model

I While people have studied the di↵erent sub-problems independently of

one another, it’s important to have a holistic view of the problem.

I We looked at issues related to knowledge representation and inference.

72

Thank You!

73

References I

Berant, J., Chou, A., Frostig, R., and Liang, P. (2013). Semantic parsing on Freebase
from question-answer pairs. In in Proceedings of EMNLP-2013, pages 1533–1544.

Chen, D. L. and Mooney, R. J. (2008). Learning to sportscast: A test of grounded
language acquisition. In Proceedings of ICML-2008, pages 128–135.

Dagan, I., Glickman, O., and Magnini, B. (2005). The pascal recognizing textual
entailment challenge. In Proceedings of the PASCAL Challenges Workshop on

Recognizing Textual Entailment.

Icard III, T. F. (2012). Inclusion and exclusion in natural language. Studia Logica,
100(4):705–725.

Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., and Steedman, M. (2010). Inducing
probabilistic CCG grammars from logical form with higher-order unification. In
Proceedings of EMNLP-2010, pages 1223–1233.

Liang, P., Jordan, M. I., and Klein, D. (2011). Learning dependency-based
compositional semantics. In Proceedings of ACL-11, pages 590–599.

Liang, P., Jordan, M. I., and Klein, D. (2013). Learning dependency-based
compositional semantics. Computational Linguistics, 39(2):389–446.

MacCartney, B. and Manning, C. D. (2009). An extended model of natural logic. In
Proceedings of the eighth International Conference on Computational Semantics,
pages 140–156.

Montague, R. (1970). Universal grammar. Theoria, 36(3):373–398.

74

References II

Richardson, K. D. and Kuhn, J. (2016). Learning to make inferences in a semantic
parsing task. Transactions of the Association for Computational Linguistics,
4:155–168.

Woods, W. A. (1973). Progress in natural language understanding: an application to
lunar geology. In Proceedings of the June 4-8, 1973, National Computer

Conference and Exposition, pages 441–450.

Zelle, J. M. and Mooney, R. J. (1996). Learning to parse database queries using
inductive logic programming. In Proceedings of AAAI-1996, pages 1050–1055.

Zettlemoyer, L. S. and Collins, M. (2009). Learning context-dependent mappings from
sentences to logical form. In Proceedings of ACL-2009, pages 976–984.

75

