Lecture 6: Learning from Denotations and
Entailments

Kyle Richardson

kyle@ims.uni-stuttgart.de

July 7, 2016

Lecture Plan

> Overview: Review of class topics and outstanding issues.

> General topics: Knowledge Representation, Learning from Entailment

The Big Picture (reminder)

» Standard processing pipeline

(FOR EVERY X /

. Semantic Parsing MAJORELT : T;
Input sem (FOR EVERY Y /

SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

List samples that contain
every major element Knowledge Representation

Reasoning

[sem] ={S10019,810059, ...}

Lunar QA system (Woods (1973))

Data-driven Semantic Parsing
> Goal: Given data, learn a function that can map any given input (x) to a

meaning representation (z).
> What kind of data do we learn from?

(input) x What state has the largest population? Supervision: Dataset D

Logical Forms: D = {(x;, z,-)}lN:1

Task: | latent) y, translation
sem) z (argmax (Ax. (state x) Ax. (population x))) ask: leam (latent) ¥, ’

Zettlemoyer and Collins (2009)
Kwiatkowski et al. (2010)

Denotations: D = {(x;, [[Zj]])}l’\l:l

. . Task: learn z,y, program synthesis
(world) [2] California
Liang et al. (2013)
Berant et al. (2013)

Geoquery Corpus (Zelle and Mooney (1996))

Question Today

» How do these different subproblems interact?

- Semantic Parsing
Input sem

List samples that contain
every major element

Reasoning

(world)

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /
SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

Knowledge Representation

[sem] ={S10019,810059, ...}

Lunar QA system (Woods (1973))

Learning from Logical Forms: CCG Example

> Data: (Oklahoma borders Texas, borders’ (oklahoma’,texas’))

> Latent Variable: CCG derivations, Probability distribution over
derivations.

borders Texas

Oklahoma (S\NP) /NP : Ay, Ax.borders(x,y) NP : texas’

(>)

NP : oklahoma’ S\NP : Ax.borders(x, texas’)

(<)

S : borders(oklahoma’,texas’) v

Learning from Logical Forms: CCG Example

> Data: (Oklahoma borders Texas, borders’ (oklahoma’,texas’))

> Latent Variable: CCG derivations, Probability distribution over
derivations.

borders Texas

Oklahoma C(S\NP)/NP : Ay, Ax.borders(x,y) NP : texas’

(>)

NP : ohio’ S\NP : Ax.borders(x, texas’)

(<)

S : borders(ohio’,texas’) X

Learning from Logical Forms: CCG Example

> Data: (Oklahoma borders Texas, borders’ (oklahoma’,texas’))

> Latent Variable: CCG derivations, Probability distribution over

derivations.
borders Texas
Oklahoma NP : texas’ (S\NP)/NP : Ay, Ax.borders(x,y)
_ (<)
NP : oklahoma’ S\NP : Ax.borders(x, texas’)

(<)

S : borders(oklahoma’,texas’) Vv

Learning from Logical Forms: Compositional Model

borders Texas

Oklahoma (S\NP) /NP : Ay, Ax.borders(x,y) NP : texas’

>)

NP : oklahoma’ S\NP : Ax.borders(x, texas’)

(<)

S : borders(oklahoma’,texas’) V

Prelude > let borders ::([Char],[Char]) -> Bool;

Prelude | borders a = (elem a [("oklahoma","texas"), ...]1)
Prelude > borders ("nh","texas")

=> False

Learning from Logical Forms: Compositional Model

borders Texas

Oklahoma (S\NP)/NP : Ay, Ax.borders(x,y) NP : texas’

(>)

NP : oklahoma’ S\NP : Ax.borders(x, texas’)

(<)

S : borders(oklahoma’,texas’) v

Prelude > :type borders
—=> borders :: ([Char], [Char]) -> Bool

10

Learning from Logical Forms: Compositional Model

borders Texas

Oklahoma (S\NP)/NP : Ay, Ax.borders(x,y) NP : texas’
(>)

NP : oklahoma’ S\NP : Ax.borders(x, texas’)

(<)

S : borders(oklahoma’,texas’) v

Prelude > :type borders

—=> borders :: ([Char], [Char]) -> Bool

Prelude > let borders_c = curry borders

Prelude > :type borders_c

=> borders_c :: [Char] -> [Char] -> Bool
semantic type: e —e —t

10

Lexical rule templates (Triggers)

Rules Categories produced from logical form
Input Trigger Output Category arg max(Az.state(z) A borders(z, tezas), Az.size(x))
constant ¢ NP:c NP :texas
arity one predicate p1 N : Az.pi(z) N : Az.state(x)
arity one predicate p; S\NP : Az.p, (=) S\NP : Ac.state(z)
arity two predicate py (S\NP)/NP : dz y.pay, =) (S\NP)/NP : Az Ay.borders(y, z)
arity two predicate p2 (S\NP)/NP : Az \y.p2(2,y) (S\NP)/NP : Az.\y.borders(z, y)
arity one predicate p; N/N : g dz.pi(z) A g(z) N/N : Ag.Az.state(z) A g(z)
literal with arity two predicate
and constant ;Zmndlzz;ummtpc? N/N : Ag.Az.pa(z,c) A g(z) N/N : Ag.Az.borders(z, texas) A g(x)
arity two predicate pz (N\N)/NP: Az. A g.Ay.p2(z, y) A g(x) (N\N)/NP : Ag.dz.Ay.borders(z, y) A g(x)
an arg max / min with second . .
o e an{y e ot NP/N : Ag. arg max / min(g, Az. f(2)) NP/N : Ag. arg max(g, Az.size(z))
an arity one R R .
numeric-ranged function f S/NP:z.f(z) S/NP : Az.size(z)

» Templates: Extracting CCG entries from example logical forms, does not

work without target logical forms.

> Having logical forms keeps the space of rules/programs feasible.

11

Lexical rule templates (Triggers)

» Templates: Extracting CCG entries from example logical forms, does not

work without target logical forms.

> Having logical forms keeps the space of rules/programs feasible.

Ax.state(x) A borders(x, texas)

]

12

Lexical rule templates (Triggers)

» Templates: Extracting CCG entries from example logical forms, does not

work without target logical forms.

> Having logical forms keeps the space of rules/programs feasible.

Ax.state(x) A borders(x, texas)

]

NP : texas

12

Lexical rule templates (Triggers)

» Templates: Extracting CCG entries from example logical forms, does not

work without target logical forms.

> Having logical forms keeps the space of rules/programs feasible.

Ax.state(x) A borders(x, texas)

]

NP : texas
(S\NP) /NP : AyAx.borders(x,y)

12

Lexical rule templates (Triggers)

» Templates: Extracting CCG entries from example logical forms, does not

work without target logical forms.

> Having logical forms keeps the space of rules/programs feasible.

Ax.state(x) A borders(x, texas)

]

NP : texas
(S\NP) /NP : AyAx.borders(x,y)
S\N : Ax.state(x)

12

Assumptions for CCG approach

> Logical Form: for each input, e.g.,

Ax.state(x) A borders(x, texas)

» Implementation: Programs that implement domain model.

» Seed Lexicon: Initial set of CCG lexical entries.

Texas = NP : texas

border := (S\NP) /NP : AyAx.borders(x, y)
states = S\N : Ax.state(x)
which = (S/(S\NP))/N : Af,Ag, Ax.f(x) A g(x)
Texas := (S/(S\NP))/N : Af,Ag, Ax.f(x) A g(x)
border = S\N : Ax.state(x)

13

Learning from Logical Forms: General Properties

> Goal: Learn to translate to logical forms using example sentences with
target logical representations.

» Critical: Having example logical forms limits the space of mappings and
translation rules.

> The types of models often used are indifferent to the types of

representations used.

14

Learning from Denotations

> Alternative approach to learning, only needs example input/output
(requires a background database of facts).

15

Learning from Denotations

> Alternative approach to learning, only needs example input/output
(requires a background database of facts).
> Logical forms: (two times two plus three, (plus (mult 2 2) 3))
> Denotations: (two times two plus three, 7)

15

Learning from Denotations

> Alternative approach to learning, only needs example input/output
(requires a background database of facts).

> Logical forms: (two times two plus three, (plus (mult 2 2) 3))
> Denotations: (two times two plus three, 7)
> Difference: In the second case, the logical representation is a latent

variables (not only the translation), no program implementation.

15

Learning from Denotations

> Alternative approach to learning, only needs example input/output
(requires a background database of facts).
> Logical forms: (two times two plus three, (plus (mult 2 2) 3))
> Denotations: (two times two plus three, 7)
> Difference: In the second case, the logical representation is a latent

variables (not only the translation), no program implementation.

N: (plus (mult 2 2) 3) N: (plus (plus 2 2) 3)
N : (mult 2 2) R : plus N : 3 N : (plus 2 2) R : plus N : 3
N:2 R:mil N:2 plus three N:2 R: plus N:2 plus three
two times two two times two

15

Learning from Denotations

> Alternative approach to learning, only needs example input/output
(requires a background database of facts).
> Logical forms: (two times two plus three, (plus (mult 2 2) 3))
> Denotations: (two times two plus three, 7)

> Why: Avoids annotation (practical/methodological), can we learn

programs from input/output? (scientific)

N: (plus (1{11}1‘0 2 2) 3) N: (plus (plus 2 2) 3)
N : (mu1t22) R : plusN 3 N : (plus 2 2) R : plus N : 3
— R /E T - /N
N:2 R:mul N:2 plus th‘ree N:2 R: plus N:2 pl‘us thl"ee
two times two two times two

16

Learning from Denotations (Liang et al. (2011))

» Computational Problem: Requires exploring an exponential space of

possible representations and programs:*

Input: What is the most populous city in California?

!

Ax.city(x)

!

Answer: Los Angeles

1 . N
Examples throughout adapted from Percy Liang's slides

17

Learning from Denotations (Liang et al. (2011))

» Computational Problem: Requires exploring an exponential space of

possible representations and programs:

Input: What is the most populous city in California?

!

Ax.city(x) A loc(x, CA)

!

Answer: Los Angeles

18

Learning from Denotations (Liang et al. (2011))

» Computational Problem: Requires exploring an exponential space of

possible representations and programs:

Input: What is the most populous city in California?

!

Ax.state(x) A border(x, CA)

!

Answer: Los Angeles

19

Learning from Denotations (Liang et al. (2011))

» Computational Problem: Requires exploring an exponential space of

possible representations and programs:

Input: What is the most populous city in California?

!

argmax (A\x.city(x) A loc(x, CA), Ax.population(x)))

!

Answer: Los Angeles

20

Learning from Denotations (Liang et al. (2011))

» Computational Problem: Requires exploring an exponential space of

possible representations and programs:

Input: What is the most populous city in California?

!

... LF, LF, LF, LF, LF LF LF LF LF LF, LF, LF, LF, LF, LF, LF ...

!

Answer: Los Angeles

21

Why exponential?

> Geoquery: Answering questions about American geography.

» World: or domain of discourse is a database consisting of predicates.

22

Why exponential?

> Geoquery: Answering questions about American geography.

» World: or domain of discourse is a database consisting of predicates.

Input: A city located in California.

]

?

1

Answer: San Francisco

city loc
San Francisco Manhattan New York
Chicago San Francisco | California
New York Chicago Illinois

22

Why exponential?

> Geoquery: Answering questions about American geography.

» World: or domain of discourse is a database consisting of predicates.

Input: A city located in California.

]

Ax.city(x)

1

Answer: San Francisco

loc

Manhattan New York

Chicago San Francisco | California

New York Chicago Illinois

23

Why exponential?

> Geoquery: Answering questions about American geography.

> Simple case: only unary predicates. What is the search space?

Input: A city located in California.

!

Ax.city(x)

1

Answer: San Francisco

loc

Manhattan New York

Chicago San Francisco | California

New York Chicago Illinois

24

Why exponential?

> Geoquery: Answering questions about American geography.

» Disjunction: In this case, imposes constraint on equality.

Input: A city located in California.

]

Ax.city(x) A loc(x,California)

1

Answer: San Francisco

Manhattan New York

Chicago

New York Chicago Illinois

25

Why exponential?

> Geoquery: Answering questions about American geography.

> Next stage: Unary+Binary. What is the search space?.

Input: A city located in California.

!

Ax.city(x) A loc(x,California)

Answer: San Francisco

Manhattan New York

Chicago

New York Chicago Illinois

26

Why exponential?

> Geoquery: Answering questions about American geography.

» Unrestrained: What is the search space?.

Input: A city located in California.

!

Ax.city(x) A loc(x,California) A P1(x,Y) A P2(x,Y) A ...

1

Answer: San Francisco

Manhattan New York

Chicago

New York Chicago Illinois

27

Learning from Denotations and Knowledge Representation

» The search space for unrestricted lambda calculus logical forms is too
large to search.

28

Learning from Denotations and Knowledge Representation

» The search space for unrestricted lambda calculus logical forms is too
large to search.

» Consider set of predicates P ={loc,city, borders, ...} of size
n, the set of disjunctions is 2" (equal to the powerset of P)

250 = 1,125,899, 906, 842, 624

28

Learning from Denotations and Knowledge Representation

» The search space for unrestricted lambda calculus logical forms is too
large to search.

» Consider set of predicates P ={loc,city, borders, ...} of size
n, the set of disjunctions is 2" (equal to the powerset of P)

250 = 1,125,899, 906, 842, 624

» We cannot rely on example logical forms to constrain the space.

28

Learning from Denotations and Knowledge Representation

» The search space for unrestricted lambda calculus logical forms is too
large to search.

» Consider set of predicates P ={loc,city, borders, ...} of size
n, the set of disjunctions is 2" (equal to the powerset of P)

250 = 1,125,899, 906, 842, 624

» We cannot rely on example logical forms to constrain the space.

> Solution (Liang et al. (2011)): Develop a constrained version of lambda

calculus, simplifies representations, tree structured

28

DCS Language (Liang et al. (2011))

> Tree structured, nodes are predicates and edges are relations.

> Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation Constraints World

city

1 San Francisco
! Chicago
Loy New York
2
1 e
loc

Manhattan New York

San Francisco | California

Chicago lllinois

CA

29

DCS Language (Liang et al. (2011))

> Tree structured, nodes are predicates and edges are relations.

> Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation Constraints World
c € city city
1 | € loc San Francisco
' s€CA Chicago
- New York
2
1 e
loc

Manhattan New York

San Francisco | California

Chicago lllinois

CA

30

DCS Language (Liang et al. (2011))

> Tree structured, nodes are predicates and edges are relations.
> Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation Constraints World
c € city city
1 | € loc San Francisco
! s€CA Chicago
- a="h New York
i h=s
loc

Manhattan New York

San Francisco | California

Chicago lllinois

CA

DCS Language (Liang et al. (2011))

> Tree structured, nodes are predicates and edges are relations.

> Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation Constraints
c €city

| € loc

scCA

C1:/1

=

lo

a

h=s

e =N

32

DCS Language (Liang et al. (2011))

> Tree structured, nodes are predicates and edges are relations.

> Basic version: Uses the join relations, which specify constraints.

Input: A city in California

Representation Constraints
c €city

| € loc

scCA

C1:/1

=

lo

a

h=s

e =N

Expansion: Ac.3/.3s.city(c) Aloc(l,CA)ANCA(s)ANca=hAb =3

32

DCS Language: Another Join Example

N

> Defines a constraint satisfaction problem (CSP)

» Computing constraints can be done in linear time using dynamic

programming.

33

DCS Language: Another Join Example

%

1 1
1 \2
1 |
171
{ 1/ \1
| |
1 1

> Defines a constraint satisfaction problem (CSP)
» Computing constraints can be done in linear time using dynamic
programming.

> Tree structure: Keeps computation and search tractable, why?

33

DCS Language: Other Relations

> 5 other relations: aggregate, execute, extract, quantify, compare.

> Aggregate relation: captures higher-order phenomena that go beyond
basic CSPs.

number of average population of
magor cities major cities

Q)

1
|
2

average

7

()

Ot p-O

ot

1
1
1
1
|
1

city,
1
]
1
i
1
(a) Counting (b) Averaging

34

Comparison with Lambda Calculus (again)

Lambda Calculus

Formulae

Ax.city(x) A loc(x,CA)

Predicates

Ax.state(x)
Ax.Ay.borders(x, y)
Ap.Ax.p(x) A major(x)

Functions

Ag.argmax(g, Ax.size(x))

DCS

G

state
border

major

argmax

35

Instantiating Predicates and Generating Trees

CA
The most populous city in CA

» String Match: between words and predicate names.

36

Instantiating Predicates and Generating Trees

argmax CA

The most populous city in CA

> String Match: between words and predicate names.

» Function Words: small lexicon of function words.

37

Instantiating Predicates and Generating Trees

city city
state state
argmax population population CA
The most populous city in CA

> String Match: between words and predicate names.
» Function Words: small lexicon of function words.

» Pos Tags: Find nouns and adjectives.

38

Instantiating Predicates and Generating Trees

city city
state state
argmax population population CA
The most populous city in CA

> String Match: between words and predicate names.
» Function Words: small lexicon of function words.
» Pos Tags: Find nouns and adjectives.

> k-best parsing: enumerate trees using k-best parser, update on good

trees using variant of EM (by now a typical approach)

38

Learning and Knowledge Representation

> Big lIdea: Learning puts certain constraints on knowledge representation.

» Theoretical Question: What representations are needed to make the
semantic learning problem tractable?

39

Learning and Knowledge Representation

> Big lIdea: Learning puts certain constraints on knowledge representation.

» Theoretical Question: What representations are needed to make the
semantic learning problem tractable?

» Learning from Logical Form: Generally agnostic to such
questions, having target representations enforces constraints.

> Learning from Denotation: Is more sensitive to type of
knowledge representation, hard computational problem.

39

Learning and Knowledge Representation

> Big lIdea: Learning puts certain constraints on knowledge representation.

» Theoretical Question: What representations are needed to make the
semantic learning problem tractable?

» Learning from Logical Form: Generally agnostic to such
questions, having target representations enforces constraints.

> Learning from Denotation: Is more sensitive to type of
knowledge representation, hard computational problem.

> Liang et al. (2011): Choose a simplified, more domain specific, version of

lambda calculus, reduce to constraint satisfaction problem.

39

What about Reasoning?

» How do these different subproblems interact?

- Semantic Parsing
Input

List samples that contain
every major element

sem

Reasoning

(world)

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /
SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

Knowledge Representation

[sem] ={S10019,810059, ...}

Lunar QA system (Woods (1973))

40

What about Reasoning?

» How do these different subproblems interact?

T Semantic Parsing
Input Qem

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /
SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

List all samples that contain
every major element

—

List some sample that contains
every major element

Reasoning

(world)

[sem] ={S10019,510059, ..

Knowledge Representation

.} D {S10019}

41

Recognizing Textual Entailment (RTE)

> Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

42

Recognizing Textual Entailment (RTE)

» Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: Norway's most famous painting, 'The Scream’ by Edward Munch,
Hypothesis: Edward Much painted 'The Scream’

True

42

Recognizing Textual Entailment (RTE)

» Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: Google files for its long awaited IPO
Hypothesis: Google goes public

True

43

Recognizing Textual Entailment (RTE)

» Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: The president of Norway made an official visit to the United States
Hypothesis: Angela Merkel yesterday visited the United States.

False/Uncertain

44

Recognizing Textual Entailment (RTE)

> Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: The president of Norway made an official visit to the United States
Hypothesis: Angela Merkel yesterday visited the United States.

False/Uncertain

45

Recognizing Textual Entailment (RTE)

> Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: The president of Norway made an official visit to the United States

Hypothesis: Angela Merkel yesterday visited the United States.
False/Uncertain

» "The basic aim of semantics is to characterize the notions of a true

sentence .. and of entailment” Montague (1970)

45

Recognizing Textual Entailment (RTE)

> Task: Given a text and hypothesis, determine the following from Dagan
et al. (2005):

Would a human reading t infer that h is most probably true?

Text: The president of Norway made an official visit to the United States
Hypothesis: Angela Merkel yesterday visited the United States.

False/Uncertain

» "The basic aim of semantics is to characterize the notions of a true
sentence .. and of entailment” Montague (1970)

» A type of Turing test, minimal requirement for intelligence.

45

Learning to Sportscast
> Learning from “grounded” supervision.

» Minimal annotation effort.

(input) x Pink3 quickly passes over to pink7
Supervision: Dataset D

y

Event Streams: D = {(x;, {z1, ...z })} 1,

GD z~ [[Z]] {PaSS(pink3 , pink .- } Task: learn (latent) y, translation
T Chen and Mooney (2008)
|

| world] |IZ]]

Game Simulator

Sportscaster corpus (Chen and Mooney (2008))

46

Requirements for Semantic Representations

» Minimal requirement: Semantic parser should be able to recognize

certain types of inferences.

Text Input Hypotheses Entailments
hy: pink3 kicks the ball Entail
input) t: Pink3 quickly kicks to Pink7 —) hy: pink3 blocks ball Contradict
h3: pink3 passes near midfield Unknown

Gm z: pass(pink3,pink7)

h
=h,
?hs
' world ’ |IZ]]

47

Learning from Entailment (Richardson and Kuhn (2016))

> Goal: Use textual entailment judgements as weak supervision to help
train a semantic parser.
> Learn more precise representations and domain knowledge, account for

inferential patterns.

Text Input Hypotheses Entailments
hy: pink3 kicks the ball Entail
input) t: Pink3 qmckly kicks to Pink7 —) hy: pink3 blocks ball Contradict
hy: pink3 passes near midfield Unknown

Gm z: pass(pink3,pink7)

h;
=h,
?h;
' world ’ |IZ]]

48

Motivation: Crude Representations

> Target representations are not expressive, underspecified

> Not based on background logical theory (no knowledge)

Entailment
. t—h .
Text t Hypothesis h hest Naive (do reps match?)
Pink 3 quickly kicks Pink 3 kicks over to
) . L Unknown .
1. to pink 1 pink 1 near midfield Entail
i . . . Unknown

pass (pink3,pink1) pass(pink3,pink1)

P.urple player 10 Purple 10 again Unknown .
2. kicks the ball shoots for the goal . Entail

. . Entail
kick(purplel0) kick(purple10)

» Desiderata: explicit treatment of modifiers

49

Motivation: Missing Knowledge

> Target representations are not expressive, underspecified.

> Not based on background logical theory (no knowledge)

Entailment
. t—h .
Text t Hypothesis h hest Naive (do reps match?)
Pink 10 kicks the ~ Fink 10 passesover .\ un
3 to pinkl . Contr.
ball kick(pink10)) . Entail
pass(pink10,pink1)
. makes a scores Unknown
4. long kick another goal Contr.
. Unknown
kick(purple7) playmode (goal_1)

> Desiderata: explicit treatment of modifiers, sense distinctions, abstract

relations between symbols
50

Learning from Entailment

» Entailments are used to reason about target symbols and find holes in the

analyses.
input: (t,h)] t pink3 A passes to pinkl
. A/dc i : pink1/X ;
a H : : H
i pink3/pink3 i pass/kick i :
h pink3 quickly kicks A
A JC. pass C kick, pinkl T A
| >
pink3 = pink3 A I quickly passes to pinkl C kicks
y I >
pink3 = pink3 passes to pink 1 # quickly kicks
>
pink3 passes to pinkl # pink3 quickly kicks

@ z Uncertain

Data: D = {((t, h);,z)}Y,, Task: learn (latent) proof y
51

Learning from Entailment

» Entailments are used to reason about target symbols and find holes in the

analyses.
input: (t,h)] t pink3 A passes to pinkl
; A/dc i ; pink1/X ;
a H : : H
i pink3/pink3 i pass/kick i :
h pink3 quickly kicks A
X JC. c , A
| >
pink3 = pink3 A I quickly C
y I >
pink3 = pink3 passes to pink 1 # quickly kicks
>
pink3 passes to pinkl # pink3 quickly kicks

@ z Uncertain

Data: D = {((t, h);,z)}Y,, Task: learn (latent) proof y
52

Learning from Entailment

» Entailments are used to reason about target symbols and find holes in the

analyses.
input: (t,h)] t pink3 A passes to pinkl
; A/dc i ; pink1/X ;
a H : : H
i pink3/pink3 i pass/kick i :
h pink3 quickly kicks A
A D c ; A
| >
pink3 = pink3 A I quickly C
y I >
pink3 = pink3 passes to pink 1 # quickly kicks
>
pink3 passes to pinkl # pink3 quickly kicks

@ z Uncertain

Data: D = {((t, h);,z)}Y,, Task: learn (latent) proof y
53

Learning from Entailment

» Entailments are used to reason about target symbols and find holes in the

analyses.
input: (t,h)] t pink3 A passes to pinkl
; A/dc i ; pink1/X ;
a H : : H
i pink3/pink3 i pass/kick i i
h pink3 quickly kicks A
A JC. pass C kick, pinkl C A
| >
pink3 = pink3 A I quickly passes to pinkl C kicks
y I >
pink3 = pink3 passes to pink 1 # quickly kicks
>
pink3 passes to pinkl # pink3 quickly kicks
sem z Uncertain

world

Data: D = {((t, h);,z)}Y,, Task: learn (latent) proof y
54

Learning from Entailment

» Entailments are used to reason about target symbols and find holes in the

analyses.
input: (t,h)] t pink3 A passes to pinkl
; A/dc i ; pink1/X ;
a H : : H
i pink3/pink3 i pass/kick i i
h pink3 quickly kicks A
A JC. pass C kick, pinkl C A
| >
pink3 = pink3 A I quickly passes to pinkl C kicks
y I >
pink3 = pink3 passes to pink 1 # quickly kicks
>
pink3 passes to pinkl # pink3 quickly kicks
sem z Uncertain

world

Data: D = {((t, h);,z)}Y,, Task: learn (latent) proof y
55

Learning from Entailment: Proofs

A dC. , pinkl C A
| >
pink3 = pink3 A I quickly passes to pinkl C kicks
| >
pink3 = pink3 passes to pink 1 # quickly kicks
I

pink3 passes to pinkl # pink3 quickly kicks

> Logical inference: requires logical inference, in this case using the
natural logic calculus (MacCartney and Manning (2009)).

56

Learning from Entailment: Proofs

A JC, pass [kick, pinklC A
| >
pink3 = pink3 A I quickly passes to pinkl T kicks
| >
pink3 = pink3 passes to pink 1 # quickly kicks

I
pink3 passes to pinkl # pink3 quickly kicks

> Logical inference: requires logical inference, in this case using the
natural logic calculus (MacCartney and Manning (2009)).

> [. axioms, set-theoretic relations between symbols.

pass L kick

Q

56

Learning from Entailment: Proofs

A JC. pass L kick, pinkl C A
| >
pink3 = pink3 A I quickly passes to pinkl C kicks
| >
pink3 = pink3 passes to pink 1 # quickly kicks

>
pink3 passes to pinkl # pink3 quickly kicks

> Logical inference: requires logical inference, in this case using the
natural logic calcluls (MacCartney and Manning (2009); lcard Il (2012)).

> [: axioms, set-theoretic relations between symbols.
> D natural logic join inference rule

CC=C

57

Learning from Entailment: Proofs

A JC. pass C kick, pinkl C A
| >
pink3 = pink3 A I quickly passes to pinkl C kicks
| >
pink3 = pink3 passes to pink 1 # quickly kicks

>

pink3 passes to pinkl # pink3 quickly kicks

> Logical inference: requires logical inference, in this case using the

natural logic calcluls (MacCartney and Manning (2009); Icard 111 (2012)).

> [. axioms, set-theoretic relations between symbols.
> < natural logic inference rules, algebraic

> Latent variable: axioms or relations, inference rules are constant.

58

Outline of Approach

> Step 1: Learn a base semantic parser on normal data (i.e. sentences —
logic) using a PCFG approach
> Step 2: Retrain on inference pairs using extended inference grammar

(i.e. sentences — logic, pairs — proofs).

» What's needed: inference dataset, logical calculus and learning

algorithm.

59

Outline of Approach

> Step 1: Learn a base semantic parser on normal data (i.e. sentences —
logic) using a PCFG approach
> Step 2: Retrain on inference pairs using extended inference grammar

(i.e. sentences — logic, pairs — proofs).

» What's needed: inference dataset, logical calculus and learning

algorithm.

» For this talk, let's assume that we have already learned a semantic

grammar.

59

Pairs to Proofs

» Going from pairs of text to proofs.

> two components: semantic relations, inference rules (joins and functions).

Transform t into h.

((t: purple? kicks the ball, h: purple team scores a goal), Uncertain)

. sub. sub.
transform. kick — score purple7 —— purple team
relation.
inference

60

Pairs to Proofs

> Going from pairs of text to proofs.

> two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple? kicks the ball, h: purple team scores a goal), Uncertain)

. sub. sub.
transform. kick —— score purple?7 —— purple team

relation. ; E
symbol definition
[xCy y
| xDy
= xX=y
| neg.
other

inference

61

Pairs to Proofs

» Going from pairs of text to proofs.

> two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple? kicks the ball, h: purple team scores a goal), Uncertain)

. b. b.
transform. kick 224 score purple? N purple team
relation. g
symbol definition
= xCy
= xDy
= xX=y
| neg.
other
> Sl == #
== C |2 #
inference (O L) = #(Uncertain) 5 S %: g # i
\ o # L # | #
| # | # | # |

()]
N

Pairs to Proofs

» Going from pairs of text to proofs.

> two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple? kicks the ball, h: purple team scores a goal), Uncertain)

. b. b.
transform. kick 224 score purple? N purple team
relation. | |
symbol definition
= xCy Bg P
2 xDy 33 g 63
= X =Yy
| neg. pur?
other

inference (D<) =3 (Uncertain)

H—ILIM X
S — LM 1
SN allnll
= — I3 ILIU

FH 3 Ik

kR R 3

[=))
w

Pairs to Proofs

> Going from pairs of text to proofs.

> two components: semantic relations, inference rules (joins and
functions). Transform t into h.

((t: purple? scores a goal, h: purple7 kicks the ball), Entail)

b. o . b.
transform. score —s kick purple? = purple?
relation. C =

Q ||

N/

inference (Cx=) =L (Entail)

F=—IUFkRILIL

H=—IUIN X
HF—ILIr
S NTnllnlllnl

HH ¥
RiR iR B

Pairs to Proofs

> Going from pairs of text to proofs.

> two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple? scores a goal, h: purple7 kicks the ball again), Uncertain)

transform. score 25 kick A E%EC purple? LN purple?
relation. C | =

o

" modifier

[)

)

Ead= #

inference (# < =) = #(Uncertain)

H=— L3R 10U

H=—ILIM X
S —ILIr
$ 3 3R IMIA)IN

RS

RERE S S i

65

Pairs to Proofs

» Going from pairs of text to proofs.

> two components: semantic relations, inference rules (joins and

functions). Transform t into h.

((t: purple? scores a goal again, h: purple7 kicks the ball), Entail)

b.. . . del. b.
transform. score =% kick L.~ \ purple? - purple7
relation. C =

" modifier

inference (Ex=) =L (Entail)

H—ILIM X
SE—ILrT
S Nnlinily
= — I3 ILIU

FH 33k
H 3k 3k 3R [

Pairs to Proofs

» Going from pairs of text to proofs.

» two components: semantic relations, inference rules (joins
and functions). Transform t into h.

((t: purple? scores a goal, h: purple7 kicks the ball), Entail)

transform.

relation.

inference

score 22 kick A\ L=, purple? LN purple7

C =

modifier

(Ex=) =L (Entail)

H—ILIM I X

S

F= 33RO

HH—IU3kILU

FH 33k

H 3k 3k 3R [

67

Pairs to Proofs

> Going from pairs of text to proofs.

> two components: semantic relations, inference rules (joins and
functions). Transform t into h.

((t: purple? kicks, h: purple7 shoots for the goal), Uncertin)

sub.

transform. kick — kick-1 purple? by purple7

relation. | =

Q ||

N\

inference (d=) =1 (Uncertain)

F= 33RO

H—ILIM X

S — LTI

HH—IU3kILU

F 33k

H 3k 3k 3R 3R

Learning from Entailment: General Idea

» Generating proofs is done jointly with learning an ordinary semantic
parser, both help each other.

> Learning is done using a version of the EM algorithm.

69

Learning from Entailment: General Idea

» Generating proofs is done jointly with learning an ordinary semantic
parser, both help each other.

> Learning is done using a version of the EM algorithm.

pink 3 kicks kick(pink3)
X y z
Parsing Model 6 Interpretation
@ Semantic/lnirence Grammar @ |— C':ntradict @
x = (t, h) y z
(pink 3 kicks,pink team kicks) Entail
. Co=play.intr= &

:alignment /\
: E playeryrg1 Splay— ‘ intr. judgement

pink3/pink team kick/kick

~
pink3/pink team kicks/kicks

pink 3/pink team kicks/kicks

69

Learned knowledge

> Learned lexical relations from example proof trees.

(1.‘7 h): (pink team is offsides,purple 9 passes) (bad pass.., loses the ball to)
| teamarg1 Eplay-tran
substitute ‘ substitute
pink team/purple9 bad pass/turnover
analysis: “pink team’/“purple 9" “bad pass .. picked off by” /“loses the ball to”
relation: pink team | purple9 bad pass C turnover
(1.'7 h): (free kick for, steals the ball from) (purple 6 kicks to,purple 6 kicks)
‘game—play ;play—tran.
substitute substitute
free kick/steal pass/kick
L “free kick for” / “steals the ball from” “kicks to" / “kicks'
analysis:
relation: free kick| steal pass C kick

70

Learned knowledge

» Learned modifiers from example proof trees.

(t, h):

analysis:
generalization:

(t, h):

analysis:
generalization:

(a beautiful pass to,passes to)

Cc > =play-tran= Coplay-tran

™~

Ce =play-tran.

Cc /A pass/pass

“a beautiful” /A “pass to’/ “passes to”

beautiful(X) C X

(yet again passes to,kicks to)

e DX =play-tran. = Coplay-tran

=play-tran.

Cc /A pass/pass

“yet again” /A “passes to” / “kicks to”

yet-again(X) C X

(gets a free kick,freekick from the)

=c =game-play

= /A freekick/freekick

“gets a" /A “free kick” / “freekick from the"

get(X) = X

(purple 10,purple 10 who is out front)

Splayeragz P = Dplayerargs

=playerag: e

purplel0/purplel0 A Ce

“purple 10" /“purple 10" A/"who is out front”

X out_front(X)

71

Conclusions

» Tried to fill in the gaps in this overall pipeline model

» While people have studied the different sub-problems independently of
one another, it's important to have a holistic view of the problem.

> We looked at issues related to knowledge representation and inference.

72

Thank Youl

73

References |

Berant, J., Chou, A., Frostig, R., and Liang, P. (2013). Semantic parsing on Freebase
from question-answer pairs. In in Proceedings of EMNLP-2013, pages 1533—-1544.

Chen, D. L. and Mooney, R. J. (2008). Learning to sportscast: A test of grounded
language acquisition. In Proceedings of ICML-2008, pages 128-135.

Dagan, I., Glickman, O., and Magnini, B. (2005). The pascal recognizing textual
entailment challenge. In Proceedings of the PASCAL Challenges Workshop on
Recognizing Textual Entailment.

Icard IIl, T. F. (2012). Inclusion and exclusion in natural language. Studia Logica,
100(4):705-725.
Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., and Steedman, M. (2010). Inducing

probabilistic CCG grammars from logical form with higher-order unification. In
Proceedings of EMNLP-2010, pages 1223-1233.

Liang, P., Jordan, M. |, and Klein, D. (2011). Learning dependency-based
compositional semantics. In Proceedings of ACL-11, pages 590-599.

Liang, P., Jordan, M. |., and Klein, D. (2013). Learning dependency-based
compositional semantics. Computational Linguistics, 39(2):389-446.

MacCartney, B. and Manning, C. D. (2009). An extended model of natural logic. In
Proceedings of the eighth International Conference on Computational Semantics,
pages 140-156.

Montague, R. (1970). Universal grammar. Theoria, 36(3):373-398.

74

References |l

Richardson, K. D. and Kuhn, J. (2016). Learning to make inferences in a semantic
parsing task. Transactions of the Association for Computational Linguistics,
4:155-168.

Woods, W. A. (1973). Progress in natural language understanding: an application to
lunar geology. In Proceedings of the June 4-8, 1973, National Computer
Conference and Exposition, pages 441-450.

Zelle, J. M. and Mooney, R. J. (1996). Learning to parse database queries using
inductive logic programming. In Proceedings of AAAI-1996, pages 1050-1055.

Zettlemoyer, L. S. and Collins, M. (2009). Learning context-dependent mappings from
sentences to logical form. In Proceedings of ACL-2009, pages 976-984.

75

