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Lecture Plan

I paper: Wong and Mooney (2006)

I general topics: Synchronous CFGs, Decoding by parsing,
word-alignment and rule extraction.
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The Big Picture (reminder)

I Standard processing pipeline

input sem

List samples that contain
every major element

world

JsemK ={S10019,S10059,...}

Semantic Parsing

Interpretation

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /

SAMPLE : (CONTAINS Y X);

(PRINTOUT Y)))

Knowledge Representation

Lunar QA system (Woods (1973))
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Semantic Parsing: Generating formal representations

I Data-driven: Given data, learn a function that can map any
given input (x) to a meaning representation (z).

I What kind of data do we learn from?

input x What state has the largest population?

sem z (argmax (λx . (state x) (population x)))

world JzK California

y

Geoquery Corpus (Zelle and Mooney (1996))
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Previously: Learning from meaning representations (again)

data: (x =two times two plus three,y = (plus (mult 2 2) 3))

I Compositional model : a semantic context-free grammar.

I Learning Model: Greedy string → tree rule induction (SILT)
I Other Topics

I Non-greedy parsing using (P)CFGs and dynamic programming,
the CKY algorithm.

I Maximum-Likelihood estimation, Expectation Maximization
and latent variables, inside-outside probabilities.
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Previous Session: Transformation rules

I Decompose translation into a set of local transformations.

data: (x =two multiplied by two plus three,y = (plus (mult 2 2) 3))

(plus (mult 2 2) 3)

N : 3

3

plus

+

(mult 2 2)

N : 2

2

mult

*

N: 2

2

r1:

N : 2

2 , r2:

mult

* , r1: ’two’ −→

N : 2

2
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Bottom-up, String → Tree Rule Matching

RULE

DIRECTIVE

ACTION

shoot

UNUM

4

TEAM

our

do

CONDITION

UNUM

4

TEAM

our

bowner

MR Grammar

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bowner TEAM UNUM

DIRECTIVE −→ do TEAM UNUM ACTION

TEAM −→ our
UNUM −→ 4
ACTION −→ shoot

Transformation: If TEAM player 4 has the ball, TEAM player 4 should shoot.

Input: If our player 4 has the ball, our player 4 should shoot.
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Semantic Parsing and Machine Translation

I Conceptually: problem is treated as a kind of machine translation

problem.

I Dataset: D = {(xi , yi )}ni=1, xj sentence, yj (semantic)
translation.

I Technically: transformation rules, common in MT.

I Idea: Recast the problem as a statistical MT task.

I Components:

I Synchronous grammar model
I Alignment-based rule extraction
I Probabilistic decoding and ranking model (more next lecture)
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Context-Free Grammars (again)

I context-free grammar (CFG):

G = (Σ,N, S ,R)

I N : set of non-terminal symbols.
I Σ : set terminal symbols.
I R : set of rules = {N → α | α ∈ (N ∪ Σ)∗}
I S : start symbol

I Context-free language: defines a set of strings

I Derivation: A tree representation of rule application on input.

I Semantic Parsing: Semantic representations and composition rules take

the form of non-terminal rules in derivations.
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Previous examples

I Derivation trees encode the semantic rules.

I example: u = two times two plus three

N: (plus (mult 2 2) 3)

N : 3

three

R : plus

plus

N : (mult 2 2)

N : 2

two

R : mult

times

N : 2

two

language G ={two times two, two times two plus three, ...}
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Synchronous Context-Free Grammars (extension)

I synchronous context-free grammar (SCFG):

GSyn = (Σe ,Σf ,N,S ,R)

I N : (shared) set of non-terminal symbols (as before).
I Σe : english terminal symbols.
I Σf : foreign (or semantic) terminal symbols.
I R : set of rules of the form:

N → 〈α, β〉

I α ∈ (N ∪ Σe), β ∈ (N ∪ Σf )

I S : start symbol: 〈S1,S2〉

I SCF Language: defines a set of string pairs

I Allows us to more explicitly relate input and output.
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Machine Translation Example

I Example: English → Japanese synchronous grammar.

I Notation: subscripts on each non-terminal N are used to relate rules on

each side. These rules must be paired in each rule. 1

S −→ 〈NP1 VP2,NP1 VP2〉
VP −→ 〈V1 NP2,NP2 V1〉
NP −→ 〈I,watashi wa〉
NP −→ 〈the box, hako wo〉
V −→ 〈open, akemasu〉

1
example from Chiang and Knight (2006)
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Machine Translation: Example Derivation

Grammar:

S −→ 〈NP1 VP2,NP1 VP2〉
VP −→ 〈V1 NP2,NP2 V1〉
NP −→ 〈I,watashi wa〉
NP −→ 〈the box, hako wo〉
V −→ 〈open, akemasu〉

Derivation

S ⇒ 〈NP11 VP12 ,NP11,VP12〉
⇒ 〈NP11 V13NP14 ,NP11NP14V13〉
⇒ 〈IV13NP14 ,watashi wa NP14V13〉
⇒ 〈I open NP14 ,watashi wa NP14 akemasu 〉
⇒ 〈I open the box ,watashi wa hako wo akemasu 〉
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SCFGs

I SCFG language: defines a set of sentence pairs

GSyn = {(I open the box,watashi wa hako wo akemasu), ...}

I derivation: a pair of trees.( S

VP

NP

the box

V

open

NP

I

,

S

VP

VP

akemasu

NP

hako wo

NP

watashi wa

)
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Two Variants of Parsing

I Parsing pairs: Given an english text and foreign text, generate a
synchronous derivation using a grammar GSyn (bitext parsing)

(I open the box,watashi wa hako wo akemasu)→ derivation

I Translation or Decoding: Given an english text, translate it into a
foreign text using a grammar GSyn

I open the box → watashi wa hako wo akemasu

I Surprisingly: The first problem is much harder than the second (despite

more information). We will only consider the second.
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Decoding by parsing (i.e., Translation)

I Assuming we have binary rules, we can use the CKY algorithm (last

lecture) for parsing.

I Idea: Parse the english side of the grammar in the normal way, then

apply or project foreign side of rules.

I Why does this work? Synchronous rules have the same LHSs.
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Decoding by Parsing: Parse English Side

Grammar:

S −→ 〈NP1 VP2,NP1 VP2〉
VP −→ 〈V1 NP2,NP2 V1〉
NP −→ 〈I,watashi wa〉
NP −→ 〈the box, hako wo〉
V −→ 〈open, akemasu〉

0 I 1 open 2 the box 3

1 2 3

0

1

2
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Decoding by Parsing: Parse English Side

Grammar:

S −→ 〈NP1 VP2,NP1 VP2〉
VP −→ 〈V1 NP2,NP2 V1〉
NP −→ 〈I,watashi wa〉
NP −→ 〈the box, hako wo〉
V −→ 〈open, akemasu〉

0 I 1 open 2 the box 3

1 2 3

0 NP→ I

1

2
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Decoding by Parsing: Parse English Side

Grammar:

S −→ 〈NP1 VP2,NP1 VP2〉
VP −→ 〈V1 NP2,NP2 V1〉
NP −→ 〈I,watashi wa〉
NP −→ 〈the box, hako wo〉
V −→ 〈open, akemasu〉

0 I 1 open 2 the box 3

1 2 3

0 NP→ I

1 V→ open

2
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Decoding by Parsing: Parse English Side

Grammar:

S −→ 〈NP1 VP2,NP1 VP2〉
VP −→ 〈V1 NP2,NP2 V1〉
NP −→ 〈I,watashi wa〉
NP −→ 〈the box, hako wo〉
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0 I 1 open 2 the box 3

1 2 3

0 NP→ I

1 V→ open VP→ V NP

2 NP→ the box
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Decoding by Parsing: Parse English Side

Grammar:

S −→ 〈NP1 VP2,NP1 VP2〉
VP −→ 〈V1 NP2,NP2 V1〉
NP −→ 〈I,watashi wa〉
NP −→ 〈the box, hako wo〉
V −→ 〈open, akemasu〉

0 I 1 open 2 the box 3

1 2 3

0 NP→ I S→ NP VP

1 V→ open VP→ V NP

2 NP→ the box
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Decoding by Parsing: Projection

Grammar:

S −→ 〈NP1 VP2,NP1 VP2〉
VP −→ 〈V1 NP2,NP2 V1〉
NP −→ 〈I,watashi wa〉
NP −→ 〈the box, hako wo〉
V −→ 〈open, akemasu〉

0 I 1 open 2 the box 3

1 2 3

0 NP→ I, watashi wa S→ NP VP, NP VP

1 V→ open akemasu VP→ V NP, NP V

2 NP → the box

hako wo
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Binarization (brief reminder/review)

I CKY algorithm (last week) assumes input grammar is in Chomsky

normal-form (binary rules and unary pre-terminal rules only).

I Why? input: w1w2w3w4

binary (one split) binary+ternary (two splits)

(w1,w2) (w1,w2)

(w2,w3) (w2,w3)

(w3,w4) (w3,w4)

(w1,w2w3) (w1,w2w3)

(w1w2,w3) (w1w2,w3)

(w2w3,w4) (w2w3,w4)

... ...
(w1,w2,w3)

(w1w2,w3,w4)

...
I Problem: Unlike normal CFGs, SCFGs cannot be binarized in the

general case.
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History: Syntax-Directed Translation

I First developed as a method for programming language compilation (i.e.

translating high-level languages to lower-level languages)(
for i in range(10):

n += i
,

move ax, 1

loop: add bx,ax

cmp ax, 10

jle loop

)

I Analogy: We can think of semantic parsing as a form of language compilation.

25



Big Idea: Wong and Mooney (2006)

I Transformation Rules: recast the string-to-tree rewrite rules (last class,

Kate et al. (2005)) as synchronous grammars rules.

I Rule Extraction: SCFGs are extracted using a word alignment model

(as done in other approaches to MT)
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Semantic Parsing and Syntax-driven Translation

Grammar:

RULE −→ 〈if CONDITION1 DIRECTIVE2, ( CONDITION1 DIRECTIVE2 )〉
CONDITION −→ 〈TEAM1 player UNUM2 has the ball , (bowner TEAM1 {UNUM}2 )〉

TEAM −→ 〈our, our〉
UNUM −→ 〈four, 4〉

Deriv.

RULE ⇒ 〈if CONDITION1 DIRECTIVE2 , ( CONDITION1, DIRECTIVE2 )〉
⇒ 〈if TEAM1 player UNUM2 has the ball DIR.2 , ((bowler TEAM1 {UNUM2}, DIR2 )〉
⇒ 〈if our player UNUM2 has the ball DIR.2 , ((bowler our {UNUM2}, DIR2 )〉
...
⇒ 〈 If our player four has the ball, then our player six ... ,

((bowner our {4})(do our {6} (pos (left (half our))))) 〉

I Is this grammar in CNF?
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Rule Extraction and Alignment

I Lexical Acquisition: finding optimal word alignments between NL

sentences and meaning representation (MR) fragments.

I Assumes (as in Kate et al. (2005)) a deterministic MR grammar.

I For alignment, MR is represented as a sequence of productions.
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Word-based alignment models (basics)

I Basic idea: Treat translation as a process of translating individual words2

Das Haus ist klein

the house is small

I Alignment function: a : i → j, (i english word to j foreign word)

a : {1→ 1, 2→ 2, 3→ 3, 4→ 4}

2
Examples from Koehn (2009) and some of his slides.
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Word-based alignment models (basics)

I Basic idea: Treat translation as a process of translating individual words3

Das Haus ist klitzeklein

the house is very small

I Alignment function: a : i → j, (i english word to j foreign word)

a : {1→ 1, 2→ 2, 3→ 3, 4→ 4, 5→ 4}

I One-to-many: foreign might translate to multiple english words.

3
Examples from Koehn (2009)
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Word-based alignment models (basics)

I Basic idea: Treat translation as a process of translating individual words4

NULL Das Haus ist klein

the house is just small

I Alignment function: a : i → j, (i english word to j foreign word)

a : {1→ 1, 2→ 2, 3→ 3, 4→ 0, 5→ 4}

I Null translation: english words might not have foreign

translations.

4
Examples from Koehn (2009)
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Word-based alignment models (basics)

I Translation probability: defined as t(ei | fj), or probability of english
word ei given a foreign word fj , s.t.∑

e

t(e | fj) = 1.0

t(. | klein) =


0.5 e = small
0.2 e = tiny
0.2 e = little
0.05 e = the
0.05 e = house
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IBM Model 1

I IBM Model 1: Based entirely on translation (or lexical) probabilities

(Brown et al. (1993)).

I english sentence: e1, .., ele
I foreign sentence: f1, .., flf

I Translation probability with alignment:

p(e, a | f ) =
1

(lf + 1)le

le∏
j=1

t(ej | fa(j))

I (lf + 1)le , the number of total alignments (assuming Null word).

33



IBM Model 1

I IBM Model 1: Based entirely on translation (or lexical) probabilities

(Brown et al. (1993)).

I english sentence: e1, .., ele
I foreign sentence: f1, .., flf

I Translation probability with alignment:

p(e, a | f ) =
1

(lf + 1)le

le∏
j=1

t(ej | fa(j))

I (lf + 1)le , the number of total alignments (assuming Null word).

33



IBM Model 1

I Translation probability with alignment:

p(e, a | f ) =
1

(lf + 1)le

le∏
j=1

t(ej | fa(j))

Das Haus ist klein

the house is small

I a : {1→ 1t(the|Das)=0.7, 2→ 2t(house|Haus)=0.8, 3→ 3...0.8, 4→ 4...0.4}

p(e, a | f ) =
1

54
∗ 0.7 ∗ 0.8 ∗ 0.8 ∗ 0.4 = 0.0029
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IBM Model 1

I Translation probability with alignment:

p(e, a | f ) =
1

(lf + 1)le

le∏
j=1

t(ej | fa(j))

I (Overall) Translation probability:

p(e | f ) =
∑
a

p(e, a | f )

I Problem: Requires summing over all alignments
I e.g., le = lf = 10 this equals (10 + 1)10 = 25, 937, 424, 601

alignments (Penn treebank, aver. somewhere near 27 words).
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IBM Model 1

I Luckily, we can get around this (using some basic math).

I (Overall) Translation probability:

p(e | f ) =
∑
a

p(e, a | f )

=

lf∑
a(1)=0

...

lf∑
a(le )=0

p(e, a | f )

=

lf∑
a(1)=0

...

lf∑
a(le )=0

1

(lf + 1)le

le∏
j=1

t(ej | fa(j))

=
1

(lf + 1)le

lf∑
a(1)=0

...

lf∑
a(le )=0

le∏
j=1

t(ej | fa(j))

=
1

(lf + 1)le

le∏
j=1

lf∑
i=0

t(ej | fj)
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IBM Model 1

I Luckily, we can get around this (using some basic math).

I (Overall) Translation probability:

p(e | f ) =
∑
a

p(e, a | f )

=
1

(lf + 1)le

le∏
j=1

lf∑
i=0

t(ej | fj)

I e = my friend, f = mein freund (without Null)

p(my friend | mein freund) = ((t(my | mein)+t(my | freund))∗(t(friend | mein)+t(friend | freund)))/22
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Learning a Model1 aligner

I Requires learning translation probabilities t(ei | fj)
I Maximum Likelihood Estimation (MLE) (with full information)

t(ei , fj) =
count(ei , fj)∑
e count(e, fj)

I Problem: We don’t have full information (i.e, target alignments)

I Expecation Maximization (EM):

I Initialize parameters randomly (or uniformly)
I e-step: Run the current model on your data, collect counts.
I m-step: Update parameters based on previous step.
I Repeat last two steps until convergence.
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EM for IBM Model1

Koehn (2009)
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Model1 as a Translation Model

I Word decoding : Model1 can be used as translation model.

p(e | f ) =
∑
a

p(e, a | f )

I Nowadays, such models are used for extracting alignments, which are the

basis of more complex translation models (e.g. our syntax-based model).

I Viterbi alignment: Find the most likely alignment given a pair (easy,
find for each word ei the most likely fj)

ai = arg maxj∈{0...lf }t(ei | fj)

I K-best alignments: Can be extended to extract top k alignments.
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Other IBM Models

I IBM Models 2-5: Go beyond using only the lexical translation

probabilities.

the1 man wearing the2 coat

the person with the jacket

I IBM Model2: adds an alignment probability distribution: a(i | j , le , lf ),
which considers relative word position and sentence length:

p(e, a | f ) =

le∏
j=1

t(ej | fa(j))a(a(j) | j , le , lf )

I Model1: t(e4 | f1) = t(e4 | f4)

I Model2: t(e4 | f1)a(1 | 4, 5, 5) < t(e4 | f4)a(4 | 4, 5, 5)
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Other IBM Models

I Model1: lexical translation probabilities, bag-of-words.

I Model2: alignment probability distribution: a(i | j , le , lf )

I Model3: fertility distribution n(φ | f ), or distribution over the number
of words each fj usually translates to.

n(1 | haus) = 1.0, n(2 | klitzeklein) = 1.0, ...

I Model4: relative distortion, word classes.

I Model5: fixes deficiency problem.
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Back to Semantic Parsing: Rule extraction (Wong and Mooney

(2006))

I Extraction: Train IBM Model5 over english sentences and sequences of

MR productions, and extract rules from 10-best alignment.

I Important: productions are used instead of MR tokens, allows for

skipping pieces without meaning.
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Rule extraction (Wong and Mooney (2006))

I Extraction: Bottom-up (as done last week), starting from alignments

with terminal symbols, then working to more complex rules.

I alignment where RHS of production rule is a MR terminal:

I TEAM → 〈our, our〉, UNUM → 〈4, 4〉, ...

I Move to more complex rules (adjust to account for sub patterns, skip

words by writing (num)):

I COND.→
〈TEAM1 player UNUM2has (1) ball, (bowner TEAM1 { UNUM2 } )〉
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Similar methods: Hiero rule extraction

I Specialized version of methods used for other types of syntax-based

decoding, e.g., hierarchical phrase-based translation (Chiang (2005))

I Does not require syntactic rules or analyses, learns them from

scratch.

30 duonianlai de youhao hezuo

friendly cooperation over the last 30 years

X1 → 〈30, 30〉
X2 → 〈friendly cooperation, youhao hezuo〉

X3 → 〈over the last X1 years ,X1 duonianlai〉
X4 → 〈X2X3,X3X2〉
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Extension to logical variables

I So far, has been used on functional representations.

I λ-Wasp (Wong and Mooney (2007)) extends rules extraction to handle
logical and lambda variables, of the type:

A→ 〈α, λx1, ..., λxnβ〉

form. → smallest(x2,(form.,form.)) form. → state(x1) form. → area(x1,x2)

smallest state by area

form→ 〈state, λx1. state(x)〉
form→ 〈by area, λx1.λy2. area(x , y)〉

form→ 〈smallest form1 form2, λx1. smallest(x2, (form1(x1), form2(x1, x2)))〉
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Probabilistic Model

I Lexical/rule induction: Over-generates, leading to many derivations.

I Extend the SCFG to a weighted SCFG (the synchronous analogue of the

PCFG), which defines a probability distribution over derivations.

I Goal is to discriminative different derivations, and find an output
translation f ∗ where

f ∗ = m(arg maxd∈D(G |e)Prλ(d | e))

I D(G | e): The set of derivations given an english input e.

I Computed using dynamic-programming and something close to the

inside-outside algorithm (last week)

I Prλ(d | e): Training a log-linear model on example derivations (more on

this next week).
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Overview and Take-aways

I Recasting the semantic parsing problem as an MT task.

I Synchronous grammars: modeling NL-MR transformations and

decoding by parsing.
I Word-Alignment Models: Basics, extracting semantic grammar

transformation rules
I Decoding and ranking models: Skipped over important details,

more about this next week

I Further directions

I Different tree-based translation models (Ehsen), more powerful

translation models (Mariia)
I Different rule extraction techniques: Li et al. (2013)
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Roadmap

I Lecture 3 (today): rule extraction, decoding (MT perspective)

I Lecture 4: Structure prediction and classification (missing today).
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