
Lecture 5: Semantic Parsing, CCGs, and
Structured Classification

Kyle Richardson

kyle@ims.uni-stuttgart.de

May 12, 2016



Lecture Plan

I paper: Zettlemoyer and Collins (2012)

I general topics: (P)CCGs, compositional semantic models, log-linear

models, (stochastic) gradient descent.

2



The Big Picture (reminder)

I Standard processing pipeline

input sem

List samples that contain
every major element

world

JsemK ={S10019,S10059,...}

Semantic Parsing

Interpretation

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /

SAMPLE : (CONTAINS Y X);

(PRINTOUT Y)))

Knowledge Representation

Lunar QA system (Woods (1973))

3



Semantic Parsing: Basic Ingredients

I Compositional Semantic Model: Generates compositional meaning

representations (e.g., logical forms, functional representations, ...)

I Translation Model: Maps text input to representations (tools already

discussed: string rewriting, CFGs, SCFGs).

I Rule Extraction: Finds the candidate translation rules (e.g., SILT,

word-alignments, ...)

I Probabilistic Model: Used for learning and finding the best translations

(PCFGs,PSCFGs, EM).

I This lecture: Introduce a new model based on (Combinatory)

Categorial Grammar and log-linear models.

4



Semantic Parsing: Basic Ingredients

I Compositional Semantic Model: Generates compositional meaning

representations (e.g., logical forms, functional representations, ...)

I Translation Model: Maps text input to representations (tools already

discussed: string rewriting, CFGs, SCFGs).

I Rule Extraction: Finds the candidate translation rules (e.g., SILT,

word-alignments, ...)

I Probabilistic Model: Used for learning and finding the best translations

(PCFGs,PSCFGs, EM).

I This lecture: Introduce a new model based on (Combinatory)

Categorial Grammar and log-linear models.

4



Classical Categorial Grammar (CG)

I Lexicalism: lexical entries encode nearly all information about how

words are combined, no separate syntactic component.

I An example (syntactic) lexicon Λ

John := NP (basic category)

Mary := NP (basic category)

sleeps := S\NP (derived category)

loves := (S\NP)/NP -

quietly := (S\NP)/(S\NP) -

5



Classical Categorial Grammar (CG)

I An example (syntactic) lexicon Λ

John := NP (basic category)

Mary := NP (basic category)

sleeps := S\NP (derived category)

loves := (S\NP)/NP -

quietly := (S\NP)/(S\NP) -

>>> john = ’NP’; mary = ’NP’

>>> sleeps = lambda x : ’S’ if x == ’NP’ else None

6



Classical Categorial Grammar (CG)

I An example (syntactic) lexicon Λ

John := NP (basic category)

Mary := NP (basic category)

sleeps := S\NP (derived category)

loves := (S\NP)/NP -

quietly := (S\NP)/(S\NP) -

>>> john = ’NP’; mary = ’NP’

>>> sleeps = lambda x : ’S’ if x == ’NP’ else None

>>> sleeps(john)

=> ’S’

7



Classical Categorial Grammar (CG)

I An example (syntactic) lexicon Λ

John := NP (basic category)

Mary := NP (basic category)

sleeps := S\NP (derived category)

loves := (S\NP)/NP -

quietly := (S\NP)/(S\NP) -

>>> john = ’NP’; mary = ’NP’

>>> loves = lambda x : (lambda y : ’S’ if y == ’NP’ else None) \
if x == NP else None

>>> loves(mary)

8



Classical Categorial Grammar (CG)

I An example (syntactic) lexicon Λ

John := NP (basic category)

Mary := NP (basic category)

sleeps := S\NP (derived category)

loves := (S\NP)/NP -

quietly := (S\NP)/(S\NP) -

>>> john = ’NP’; mary = ’NP’

>>> loves = lambda x : (lambda y : ’S’ if y == ’NP’ else None) \
if x == NP else None

>>> loves(mary)

=> <function main . <lambda>>

9



Classical Categorial Grammar (CG)

I An example (syntactic) lexicon Λ

John := NP (basic category)

Mary := NP (basic category)

sleeps := S\NP (derived category)

loves := (S\NP)/NP -

quietly := (S\NP)/(S\NP) -

>>> john = ’NP’; mary = ’NP’

>>> loves = lambda x : (lambda y : ’S’ if y == ’NP’ else None) \
if x == NP else None

>>> loves(mary)(john)

=> ’S’

10



CG Derivations

I Often shown in a tabular proof form, as a series of cancellation steps.

John

NP

loves

(S\NP)/NP

Mary

NP

(>)

S\NP
(<)

S

I function application

I >: A/B B −→ A
I <: B A\B −→ A

11



CG Derivations

I Often shown in a tabular proof form, as a series of cancellation steps.

John

NP

loves

(S\NP)/NP

Mary

NP

(>)

S\NP
(<)

S
I function application

I >: A/B B −→ A
I <: B A\B −→ A

11



CG Derivations

I Often shown in a tabular proof form, as a series of cancellation steps.

John

NP

loves

(S\NP)/NP

Mary

NP

(>)

S\NP
(<)

S

>>> apply right = lambda fun,arg : fun(arg)

>>> apply left = lambda arg,fun : fun(arg)

>>> apply right(loves,mary)

=> <function main . <lambda>>

12



CG Derivations

I Often shown in a tabular proof form, as a series of cancellation steps.

John

NP

loves

(S\NP)/NP

Mary

NP

(>)

S\NP
(<)

S

>>> apply right = lambda fun, arg: fun(arg)

>>> apply left = lambda arg, fun: fun(arg)

>>> apply left(john,apply right(loves,mary))

=> ’S’

13



CG and Semantics

I Lexical rules can be extended to have a compositional semantics.

John := NP : john’

Mary := NP : mary’

sleeps := S\NP : λx .sleep(x)

loves := (S\NP)/NP : λy , λx .loves(x , y)

quietly := (S\NP)/(S\NP) : λf .λx . f (x) ∧ quiet(f , x)

14



CG Derivations

I Often shown in a tabular proof form, as a series of cancellation steps.

John

NP : john’

loves

(S\NP)/NP : λy , λx .love(x , y)

Mary

NP : mary’

(>)

S\NP : λx .love(x ,mary ′)

(<)

S : love(john’,mary’)

I function application with semantics

I >: A/B : f B : g −→ A : f(g)
I <: B : g A\B : f −→ A : f(g)

15



CG Derivations

I Often shown in a tabular proof form, as a series of cancellation steps.

John

NP : john’

loves

(S\NP)/NP : λy , λx .love(x , y)

Mary

NP : mary’

(>)

S\NP : λx .love(x ,mary ′)

(<)

S : love(john’,mary’)

I Derivation: (L,T ), where L is a logical form (top), and T is the

derivation steps (parse tree).

16



Combinatory Categorial Grammar (CCG)

I A particular theory of categorial grammar, which uses additional function
application types (see paper for pointers or Steedman (2000)).

e.g., composition: A/B : f B/C : g → A/C : λx .f (g(x))

I Benefits: Is linguistically motivated, much more powerful than

context-free grammars (mildly context-sensitive), polynomial parsing.

I Parsing: Extended version of CKY algorithm (Steedman (2000))

17



Combinatory Categorial Grammar (CCG)

I A particular theory of categorial grammar, which uses additional function
application types (see paper for pointers or Steedman (2000)).

e.g., composition: A/B : f B/C : g → A/C : λx .f (g(x))

I Benefits: Is linguistically motivated, much more powerful than

context-free grammars (mildly context-sensitive), polynomial parsing.

I Parsing: Extended version of CKY algorithm (Steedman (2000))

17



A note about mild context-sensitivity

anbm

anbn

context-free languages

anbncndn

mild. context-sensitive

anbncndnen

context-sensitive

regular languages

I CCGs and other mildly context-sensitive formalism (TAGs, LIGs, ...)

allows derivations/graphs more general than trees.

I Theoretical question: what types of grammar formalisms are best

suited for semantic parsing?

18



A note about mild context-sensitivity

anbm

anbn

context-free languages

anbncndn

mild. context-sensitive

anbncndnen

context-sensitive

regular languages

I CCGs and other mildly context-sensitive formalism (TAGs, LIGs, ...)

allows derivations/graphs more general than trees.

I Theoretical question: what types of grammar formalisms are best

suited for semantic parsing?

18



Earlier Lecture (Liang and Potts 2015)

I We have already seen something like categorial grammar.

I Rules ares divided between syntactic and semantic rules.

19



Compositional Semantics (past lecture)

Principle of Compositionality: The meaning of a complex expression is a

function of the meaning of its parts and the rules that combine them.

Example: John studies.

john’ −→ “John”

(λx .(study’ x)) −→ “studies”

(λx .(study’ x))(john)→ (study’ john’)→ {True,False}

(λx .(study’ x))

studies

john’

John

20



Compositional Semantics (past lecture)

Principle of Compositionality: The meaning of a complex expression is a

function of the meaning of its parts and the rules that combine them.

Example: John studies.

john’ −→ “John”

(λx .(study’ x)) −→ “studies”

>>> students studying = set([”john”, ”mary”])

>>> study = lambda x : x in students studying

>>> fun application = lambda fun, val : fun(val)

>>> fun application(study , ”bill”)

>>> False

21



Geoquery Logical forms

I Zettlemoyer and Collins (2012) use a conventional logical language.

I constants: entities, numbers, functions
I logical connectives: conjunction (∧), disjunction (∨), negation

(¬), implication (→)
I quantifiers: universal (∀) and existential (∃).
I lambda expressions: anonymous functions (λx .f (x))
I other quantifiers/functions: arg max, definite descriptions (ι),..

Example: What states border Texas?

λx .state(x) ∧ borders(x , texas)

22



Geoquery Logical forms

I Zettlemoyer and Collins (2012) use a conventional logical language.

I constants: entities, numbers, functions
I logical connectives: conjunction (∧), disjunction (∨), negation

(¬), implication (→)
I quantifiers: universal (∀) and existential (∃).
I lambda expressions: anonymous functions (λx .f (x))
I other quantifiers/functions: arg max, definite descriptions (ι),..

Example: What is the largest state?

arg max(λx .state(x), λx .size(x))

23



A mini functional interpreter: Constants (Haskell)1

I Example: What states border Texas?

λx .state(x) ∧ borders(x , texas)

Texas := NP : texas

border := (S\NP)/NP : λyλx .borders(x , y)
states := S\N : λx .state(x)
which := (S/(S\NP))/N : λf , λg , λx .f (x) ∧ g(x)

Prelude > let state a = (elem a ["nh","ma","vt"])

Prelude > state "nh"

=> True

Prelude > :type state

=> state :: [Char] -> Bool

semantic type: e −→ t

1
you can try out these examples using https://tryhaskell.org/

24



A mini functional interpreter: Constants (Haskell)1

I Example: What states border Texas?

λx .state(x) ∧ borders(x , texas)

Texas := NP : texas

border := (S\NP)/NP : λyλx .borders(x , y)
states := S\N : λx .state(x)
which := (S/(S\NP))/N : λf , λg , λx .f (x) ∧ g(x)

Prelude > let state a = (elem a ["nh","ma","vt"])

Prelude > state "nh"

=> True

Prelude > :type state

=> state :: [Char] -> Bool

semantic type: e −→ t

1
you can try out these examples using https://tryhaskell.org/

24



A mini functional interpreter: Constants (Haskell)1

I Example: What states border Texas?

λx .state(x) ∧ borders(x , texas)

Texas := NP : texas

border := (S\NP)/NP : λyλx .borders(x , y)
states := S\N : λx .state(x)
which := (S/(S\NP))/N : λf , λg , λx .f (x) ∧ g(x)

Prelude > let state a = (elem a ["nh","ma","vt"])

Prelude > state "nh"

=> True

Prelude > :type state

=> state :: [Char] -> Bool

semantic type: e −→ t

1
you can try out these examples using https://tryhaskell.org/

24



A mini functional interpreter: Constants (Haskell)

I Example: What states border Texas?

λx .state(x) ∧ borders(x , texas)

Texas := NP : texas

border := (S\NP)/NP : λyλx .borders(x , y)
states := S\N : λx .state(x)
which := (S/(S\NP))/N : λf , λg , λx .f (x) ∧ g(x)

Prelude > let borders ::([Char],[Char]) -> Bool;

Prelude | borders a = (elem a [("oklahoma","texas")])

Prelude > borders ("nh","texas")

=> False

25



A mini functional interpreter: Constants (Haskell)

I Example: What states border Texas?

λx .state(x) ∧ borders(x , texas)

Texas := NP : texas

border := (S\NP)/NP : λyλx .borders(x , y)
states := S\N : λx .state(x)
which := (S/(S\NP))/N : λf , λg , λx .f (x) ∧ g(x)

Prelude > let borders ::([Char],[Char]) -> Bool;

Prelude | borders a = (elem a [("oklahoma","texas")])

Prelude > borders ("nh","texas")

=> False

25



CG and Binary Rules

I CGs typically assume binary rules/functions (or curried functions), so that

function application applies to one argument at a time.

I Example: What states border Texas?

λx .state(x) ∧ borders(x , texas)

Texas := NP : texas

border := (S\NP)/NP : λyλx .borders(x , y)
states := S\N : λx .state(x)
which := (S/(S\NP))/N : λf , λg , λx .f (x) ∧ g(x)

Prelude > :type borders

=> borders :: ([Char], [Char]) -> Bool

Prelude > let borders c = curry borders

Prelude > :type borders c

=> borders c :: [Char] -> [Char] -> Bool

semantic type: e −→ e −→ t

26



CG and Binary Rules

I CGs typically assume binary rules/functions (or curried functions), so that

function application applies to one argument at a time.

I Example: What states border Texas?

λx .state(x) ∧ borders(x , texas)

Texas := NP : texas

border := (S\NP)/NP : λyλx .borders(x , y)
states := S\N : λx .state(x)
which := (S/(S\NP))/N : λf , λg , λx .f (x) ∧ g(x)

Prelude > :type borders

=> borders :: ([Char], [Char]) -> Bool

Prelude > let borders c = curry borders

Prelude > :type borders c

=> borders c :: [Char] -> [Char] -> Bool

semantic type: e −→ e −→ t

26



CG and Binary Rules

I CGs typically assume binary rules/functions (or curried functions), so that

function application applies to one argument at a time.

I Example: What states border Texas?

λx .state(x) ∧ borders(x , texas)

Texas := NP : texas

border := (S\NP)/NP : λyλx .borders(x , y)
states := S\N : λx .state(x)
which := (S/(S\NP))/N : λf , λg , λx .f (x) ∧ g(x)

Prelude > :type borders

=> borders :: ([Char], [Char]) -> Bool

Prelude > let borders c = curry borders

Prelude > :type borders c

=> borders c :: [Char] -> [Char] -> Bool

semantic type: e −→ e −→ t

26



CG and Binary Rules

I CGs typically assume binary rules/functions (or curried functions), so that

function application applies to one argument at a time.

I Example: What states border Texas?

λx .state(x) ∧ borders(x , texas)

Texas := NP : texas

border := (S\NP)/NP : λyλx .borders(x , y)
states := S\N : λx .state(x)
which := (S/(S\NP))/N : λf , λg , λx .f (x) ∧ g(x)

Prelude > :type borders

=> borders :: ([Char], [Char]) -> Bool

Prelude > let borders c = curry borders

Prelude > :type borders c

=> borders c :: [Char] -> [Char] -> Bool

semantic type: e −→ e −→ t

26



CG and Binary Rules

I CGs typically assume binary rules/functions (or curried functions), so that

function application applies to one argument at a time.

I Example: What states border Texas?

λx .state(x) ∧ borders(x , texas)

Texas := NP : texas

border := (S\NP)/NP : λyλx .borders(x , y)
states := S\N : λx .state(x)
which := (S/(S\NP))/N : λf , λg , λx .f (x) ∧ g(x)

Prelude > let borders c = curry borders

Prelude > borders c "oklahoma" "texas"

=> True

Prelude > borders c 10 "texas"

=> type error

27



CG and Binary Rules

I CGs typically assume binary rules/functions (or curried functions), so that

function application applies to one argument at a time.

I Example: What states border Texas?

λx .state(x) ∧ borders(x , texas)

Texas := NP : texas

border := (S\NP)/NP : λyλx .borders(x , y)
states := S\N : λx .state(x)
which := (S/(S\NP))/N : λf , λg , λx .f (x) ∧ g(x)

Prelude > let borders c = curry borders

Prelude > borders c "oklahoma" "texas"

=> True

Prelude > borders c 10 "texas"

=> type error

27



CG and Binary Rules

I CGs typically assume binary rules/functions (or curried functions), so that

function application applies to one argument at a time.

I Example: What states border Texas?

λx .state(x) ∧ borders(x , texas)

Texas := NP : texas

border := (S\NP)/NP : λyλx .borders(x , y)
states := S\N : λx .state(x)
which := (S/(S\NP))/N : λf , λg , λx .f (x) ∧ g(x)

Prelude > let borders c = curry borders

Prelude > borders c "oklahoma" "texas"

=> True

Prelude > borders c 10 "texas"

=> type error

27



CG and Partial Function Application

Oklahoma

NP : oklahoma’

borders

(S\NP)/NP : λy , λx .borders(x , y)

Texas

NP : texas’

(>)

S\NP : λx .borders(x , texas ′)

(<)

S : borders(oklahoma’,texas’)

Prelude > let borders texas = borders c "texas"

Prelude > :type borders texas

=> borders texas :: [Char] -> Bool

28



CG and Partial Function Application

Oklahoma

NP : oklahoma’

borders

(S\NP)/NP : λy , λx .borders(x , y)

Texas

NP : texas’

(>)

S\NP : λx .borders(x , texas ′)

(<)

S : borders(oklahoma’,texas’)

Prelude > let borders texas = borders c "texas"

Prelude > :type borders texas

=> borders texas :: [Char] -> Bool

28



CG and Partial Function Application

Oklahoma

NP : oklahoma’

borders

(S\NP)/NP : λy , λx .borders(x , y)

Texas

NP : texas’

(>)

S\NP : λx .borders(x , texas ′)

(<)

S : borders(oklahoma’,texas’)

Prelude > let borders texas = borders c "texas"

Prelude > borders texas "oklahoma"

=> True

29



CG and Partial Function Application

Oklahoma

NP : oklahoma’

borders

(S\NP)/NP : λy , λx .borders(x , y)

Texas

NP : texas’

(>)

S\NP : λx .borders(x , texas ′)

(<)

S : borders(oklahoma’,texas’)

Prelude > right apply f x = (f x)

Prelude > right apply borders c "texas"

30



Overall Model: Zettlemoyer and Collins (2012)

I Compositional Semantic Model: assumes the geo-query

representations and semantics we’ve discussed. X

I Probabilistic Model: Deciding between different analyses, handling

spurious ambiguity.

I Lexical (Rule) Extraction: Finding set of CCG lexical entries in Λ.

31



Probabilistic CCG Model

I Assumption: Let’s say (for now) we have a crude CCG lexicon Λ that

over-generates for any given input

I Derivation: a pair, (L,T ), where L is the final logical form and T is the
derivation tree.

Example: Oklahoma borders Texas

Oklahoma

NP : oklahoma’

borders

(S\NP)/NP : λy , λx .borders(x , y)

Texas

NP : texas’

(>)

S\NP : λx .borders(x , texas′)

(<)

S : borders(oklahoma’,texas’) X

32



Probabilistic CCG Model

I Assumption: Let’s say (for now) we have a crude CCG lexicon Λ that

over-generates for any given input

I Derivation: a pair, (L,T ), where L is the final logical form and T is the
derivation tree.

Example: Oklahoma borders Texas

Oklahoma

NP : oklahoma’

borders

NP : texas’

Texas

(S\NP)/NP : λy , λx .borders(x , y)

(<)

S\NP : λx .borders(x , texas′)

(<)

S : borders(oklahoma’,texas’) X

33



Probabilistic CCG Model

I Assumption: Let’s say (for now) we have a crude CCG lexicon Λ that

over-generates for any given input

I Derivation: a pair, (L,T ), where L is the final logical form and T is the
derivation tree.

Example: Oklahoma borders Texas

Oklahoma

NP : ohio’

borders

(S\NP)/NP : λy , λx .borders(x , y)

Texas

NP : texas’

(>)

S\NP : λx .borders(x , texas′)

(<)

S : borders(ohio’,texas’) ×

34



Probabilistic CCG Model

I Use a log-linear formulation of CCG (Clark and Curran (2003)):

p(L,T | S ; θ) =
e f (L,T ,S)·θ∑

(L,T ) e
f (L,T ,S)·θ

I Parsing Problem:

argmax
L

P(L | S ; θ) =
∑
T

p(L,T | S ; θ)

I Note: T might be very large, use dynamic programming.

I Learning Setting: The correct derivations are not annotated (latent),

no further supervision is provided (weak). Lexicon is learned from data.

35



Probabilistic CCG Model

I Use a log-linear formulation of CCG (Clark and Curran (2003)):

p(L,T | S ; θ) =
e f (L,T ,S)·θ∑

(L,T ) e
f (L,T ,S)·θ

I Parsing Problem:

argmax
L

P(L | S ; θ) =
∑
T

p(L,T | S ; θ)

I Note: T might be very large, use dynamic programming.

I Learning Setting: The correct derivations are not annotated (latent),

no further supervision is provided (weak). Lexicon is learned from data.

35



Probabilistic CCG Model

I Use a log-linear formulation of CCG (Clark and Curran (2003)):

p(L,T | S ; θ) =
e f (L,T ,S)·θ∑

(L,T ) e
f (L,T ,S)·θ

I Parsing Problem:

argmax
L

P(L | S ; θ) =
∑
T

p(L,T | S ; θ)

I Note: T might be very large, use dynamic programming.

I Learning Setting: The correct derivations are not annotated (latent),

no further supervision is provided (weak). Lexicon is learned from data.

35



Log-linear Model: Basics

I Log-Linear Model: 2

I A set X of inputs (e.g. sentences)
I A set Y of labels/structures.
I A feature function f : X × Y → Rd for any pair (x,y)
I A weight vector θ

I Conditional Model: for x ∈ X , y ∈ Y

p(y | x ; θ) =
e f (x,y)·θ

Z(x , θ)

2
Examples and ideas from Michael Collin’s and Charles Elkan’s tutorials (see syllabus).

36



Log-linear Model: Basics

I Conditional Model: for x ∈ X , y ∈ Y

p(y | x ; θ) =
e f (x,y)·θ

Z(x , θ)

I ex : or exponential function exp(x) (keeps scores positive)
I inner product: (sum of features fj times feature weights θj)

f (x , y) · θ =
d∑

k=1

θk fk(x , y)

I normalization term or partition function:

Z(x , θ) =
∑
y′∈Y

e f (x,y′)·θ

37



Structured Classification and Features

I Structured classification: We assume that labels in Y has a rich internal

structure (e.g., parse trees, pos tag sequences).

I Individual feature functions:

fi (x , y)→ R for i = 1,...,d

I In the general case for log-linear models, there is no restriction on

the types of features you can define.

I Feature Templates: features are not usually specified individually, but

in terms of more general classes:

38



Structured Classification and Features

I Structured classification: We assume that labels in Y has a rich internal

structure (e.g., parse trees, pos tag sequences).

I Individual feature functions:

fi (x , y)→ R for i = 1,...,d

I In the general case for log-linear models, there is no restriction on

the types of features you can define.

I Feature Templates: features are not usually specified individually, but

in terms of more general classes:

38



Structured Classification and Features

I Structured classification: We assume that labels in Y has a rich internal

structure (e.g., parse trees, pos tag sequences).

I Individual feature functions:

fi (x , y)→ R for i = 1,...,d

I In the general case for log-linear models, there is no restriction on

the types of features you can define.

I Feature Templates: features are not usually specified individually, but

in terms of more general classes:

38



Features: Part of speech tagging

I Goal: Assign to a given input word wj in a sentences a part-of-speech
tag given a set of tags Y={N,ADJ,PN,...}

Example: TheD dogN sleeps

fid(wj∧y)(x , y) =

{
1 each word wj ∈ x has tag y
0 otherwise

fid(wj−1∧wj∧y)(x , y) =

{
1 each word wj and wj−1 have tag y
0 otherwise

fid(mother feature)(x , y) =

{
100 my mother likes y tags
0 otherwise

”At the end of the day... the important factor is the features used” Domingos (2012)

39



Features: Part of speech tagging

I Goal: Assign to a given input word wj in a sentences a part-of-speech
tag given a set of tags Y={N,ADJ,PN,...}

Example: TheD dogN sleeps

fid(wj∧y)(x , y) =

{
1 each word wj ∈ x has tag y
0 otherwise

fid(wj−1∧wj∧y)(x , y) =

{
1 each word wj and wj−1 have tag y
0 otherwise

fid(mother feature)(x , y) =

{
100 my mother likes y tags
0 otherwise

”At the end of the day... the important factor is the features used” Domingos (2012)

39



Features: Part of speech tagging

I Goal: Assign to a given input word wj in a sentences a part-of-speech
tag given a set of tags Y={N,ADJ,PN,...}

Example: TheD dogN sleeps

fid(wj∧y)(x , y) =

{
1 each word wj ∈ x has tag y
0 otherwise

fid(wj−1∧wj∧y)(x , y) =

{
1 each word wj and wj−1 have tag y
0 otherwise

fid(mother feature)(x , y) =

{
100 my mother likes y tags
0 otherwise

”At the end of the day... the important factor is the features used” Domingos (2012)

39



Features: Part of speech tagging

I Goal: Assign to a given input word wj in a sentences a part-of-speech
tag given a set of tags Y={N,ADJ,PN,...}

Example: TheD dogN sleeps

fid(wj∧y)(x , y) =

{
1 each word wj ∈ x has tag y
0 otherwise

fid(wj−1∧wj∧y)(x , y) =

{
1 each word wj and wj−1 have tag y
0 otherwise

fid(mother feature)(x , y) =

{
100 my mother likes y tags
0 otherwise

”At the end of the day... the important factor is the features used” Domingos (2012)

39



Local CCG features: Zettlemoyer and Collins (2012)

I Output labels: Y is the set of (structured) CCG derivations.

I Local features: Limit features to lexical rules in derivations

Oklahoma

NP : oklahoma’

borders

(S\NP)/NP : λy , λx .borders(x , y)

Texas

NP : texas’

(>)

S\NP : λx .borders(x , texas′)

(<)

S : borders(oklahoma’,texas’)

fid(NP : texas’)(x , y) = count(NP : texas’) = 1

40



Local CCG features: Zettlemoyer and Collins (2012)

I Output labels: Y is the set of (structured) CCG derivations.

I Local features: Limit features to lexical rules in derivations

Oklahoma

NP : oklahoma’

borders

(S\NP)/NP : λy , λx .borders(x , y)

Texas

NP : texas’

(>)

S\NP : λx .borders(x , texas′)

(<)

S : borders(oklahoma’,texas’)

fid(NP : texas’)(x , y) = count(NP : texas’) = 1

40



Local CCG features: Zettlemoyer and Collins (2012)

I Output labels: Y is the set of (structured) CCG derivations.

I Local features: Limit features to lexical rules in derivations

Oklahoma

NP : oklahoma’

borders

(S\NP)/NP : λy , λx .borders(x , y)

Texas

NP : texas’

(>)

S\NP : λx .borders(x , texas′)

(<)

S : borders(oklahoma’,texas’)

fid(NP : texas’)(x , y) = count(NP : texas’) = 1

40



Local versus non-local features

I Why only local?: Can be efficiently and easy extracted using our

normal parsing algorithms and dynamic programming.

I Chart data-structure (e.g., in CKY) is a flat structure of cell entries.

Oklahoma

NP : oklahoma’

borders

(S\NP)/NP : λy , λx .borders(x , y)

Texas

NP : texas’

(>)

S\NP : λx .borders(x , texas′)

(<)

S : borders(oklahoma’,texas’)

fj(x , y) = 〈”Oklahoma”, ”borders”, NP : texas’〉

41



Local versus non-local features

I Why only local?: Can be efficiently and easy extracted using our

normal parsing algorithms and dynamic programming.

I Chart data-structure (e.g., in CKY) is a flat structure of cell entries.

I Non-local features: getting around these issues.

I k-best parsing: train a model on k-best trees (more on this later).
I forest-reranking: Huang (2008).

42



Parameter Estimation in Log-Linear Models: Basics

I Learning task: choose values for feature weights that solve some
objective.

Training Data: D = {(xi , yi )}ni=1

I Maximum Likelihood: find a model θ∗ that maximizes the probability of

training data (or logarithm of conditional likelihood (LCL)):

θ∗ = max
θ

n∏
i=1

p(yi | xi ; θ)

= max
θ

n∑
i=1

log p(yi | xi ; θ)

43



Optimization and Gradient methods

I Optimization: method for solving your objective.

I Intuitively: assigning numbers to feature weights: θ1, ..., θd ∈ θd

I Gradient-based optimization: Uses a tool from calculus, the gradient

I Gradient: A type of derivative, or measure of the rate that a

function changes
I Tells the direction to move in order to get closer to objective.

44



Optimization and Gradient methods

I Optimization: method for solving your objective.

I Intuitively: assigning numbers to feature weights: θ1, ..., θd ∈ θd

I Gradient-based optimization: Uses a tool from calculus, the gradient

I Gradient: A type of derivative, or measure of the rate that a

function changes
I Tells the direction to move in order to get closer to objective.

44



Optimization and Gradient methods

I Optimization: method for solving your objective.

I Intuitively: assigning numbers to feature weights: θ1, ..., θd ∈ θd

I Gradient-based optimization: Uses a tool from calculus, the gradient

I Gradient: A type of derivative, or measure of the rate that a

function changes
I Tells the direction to move in order to get closer to objective.

44



Gradient Methods: Intuitive explanation 3

Imagine your hobby is blindfolded mountain climbing, i.e., someone
blindfolds you and puts you on the side of a mountain. Your goal is to
reach the peak of the mountain by feeling things out, e.g., moving in the
direction that feels upward until you reach the peak.

If mountain is concave, you will eventually reach your goal.

I Objective: Reach the maximum point (the peak) of the mountain.

I Gradient: The direction to move at each point to get closer to the point

(or your objective).

I Step Size: How much to move at each step (parameter).

3
Example taken from Hal Daume III’s book: http://ciml.info/

45



Gradient Methods: Intuitive explanation 3

Imagine your hobby is blindfolded mountain climbing, i.e., someone
blindfolds you and puts you on the side of a mountain. Your goal is to
reach the peak of the mountain by feeling things out, e.g., moving in the
direction that feels upward until you reach the peak.

If mountain is concave, you will eventually reach your goal.

I Objective: Reach the maximum point (the peak) of the mountain.

I Gradient: The direction to move at each point to get closer to the point

(or your objective).

I Step Size: How much to move at each step (parameter).

3
Example taken from Hal Daume III’s book: http://ciml.info/

45



Gradient Methods: Intuitive explanation 3

Imagine your hobby is blindfolded mountain climbing, i.e., someone
blindfolds you and puts you on the side of a mountain. Your goal is to
reach the peak of the mountain by feeling things out, e.g., moving in the
direction that feels upward until you reach the peak.

If mountain is concave, you will eventually reach your goal.

I Objective: Reach the maximum point (the peak) of the mountain.

I Gradient: The direction to move at each point to get closer to the point

(or your objective).

I Step Size: How much to move at each step (parameter).

3
Example taken from Hal Daume III’s book: http://ciml.info/

45



Gradient Methods: Intuitive explanation 3

Imagine your hobby is blindfolded mountain climbing, i.e., someone
blindfolds you and puts you on the side of a mountain. Your goal is to
reach the peak of the mountain by feeling things out, e.g., moving in the
direction that feels upward until you reach the peak.

If mountain is concave, you will eventually reach your goal.

I Objective: Reach the maximum point (the peak) of the mountain.

I Gradient: The direction to move at each point to get closer to the point

(or your objective).

I Step Size: How much to move at each step (parameter).

3
Example taken from Hal Daume III’s book: http://ciml.info/

45



Gradient Ascent

I Gradient ascent algorithm: (abstract form)

1: Initialize θd to 0
2: While not converged do
3: Calculate δk = ∂O

∂θk
for k = 1,..,d

4: Set each θk = θk + α ∗ δk
9: Return θd

I Goal: To find some maximum of a function.

I Gradient δk : Direction to move each feature θk to get closer to your

objective O (e.g., reaching the peak).

I line 3: in batch case uses full dataset to estimate.

I α: learning rate or size of step to take (hyper-parameter).

46



Gradient Ascent: Computing the Gradients

I Dataset: Assume that we have our dataset D = {(xi , yi )}ni=1, feature

vector θd

I LCL Objective:

O(θ) =
n∑

i=1

log p(yi | xi ; θ)

I Computing Gradient (using some calculus, full derivation not shown)

∂

∂θj
log p(y | x ; θ) =

n∑
i=1

fj(xi , yn)−
n∑

i=1

∑
y′∈Y

p(y | xi ; θ)fj(xi , y)

I The main formula for computing line 3 (last page):

I Empirical counts: The first half/summation above
I Expected counts: The second half.

47



Gradient Ascent: Computing the Gradients

I Dataset: Assume that we have our dataset D = {(xi , yi )}ni=1, feature

vector θd

I LCL Objective:

O(θ) =
n∑

i=1

log p(yi | xi ; θ)

I Computing Gradient (using some calculus, full derivation not shown)

∂

∂θj
log p(y | x ; θ) =

n∑
i=1

fj(xi , yn)−
n∑

i=1

∑
y′∈Y

p(y | xi ; θ)fj(xi , y)

I The main formula for computing line 3 (last page):

I Empirical counts: The first half/summation above
I Expected counts: The second half.

47



Gradient Ascent: Computing the Gradients

I Computing Gradient (using some calculus, full derivation not shown)

∂

∂θj
log p(y | x ; θ) =

n∑
i=1

fj(xi , yn)−
n∑

i=1

∑
y′∈Y

p(y | xi ; θ)fj(xi , y)

1: Initialize θd to 0
2: While not converged do
3: Calculate δk = ∂O

∂θk
for k = 1,..,d

4: Set each θk = θk + α ∗ δk
9: Return θd

I Note: Making updates (line 4) first requires first iterating over our full

training training (line 3), is instance of batch learning.

48



Gradients: Zettlemoyer and Collins (2012)

I Recall that a CCG derivation is a pair (L,T )

I LCL objective (same objective, but a slightly different computation)

O(θ) =
n∑

i=1

log p(Li | xi ; θ)

=
n∑

i=1

log
(∑

T

p(Li ,T | xi ; θ)
)

I Computing Gradient:

∂

∂θj
log p(y | x ; θ)

=
n∑

i=1

∑
T

fj (Li ,T , xi )p(T | Li , xi ; θ)−
n∑

i=1

∑
L,T

fj (L,T , xi )p(L,T | xi ; θ)

49



Gradients: Zettlemoyer and Collins (2012)

I Recall that a CCG derivation is a pair (L,T )

I LCL objective (same objective, but a slightly different computation)

O(θ) =
n∑

i=1

log p(Li | xi ; θ)

=
n∑

i=1

log
(∑

T

p(Li ,T | xi ; θ)
)

I Computing Gradient:

∂

∂θj
log p(y | x ; θ)

=
n∑

i=1

∑
T

fj (Li ,T , xi )p(T | Li , xi ; θ)−
n∑

i=1

∑
L,T

fj (L,T , xi )p(L,T | xi ; θ)

49



Gradients: Zettlemoyer and Collins (2012)

I Computing Gradient:

∂

∂θj
log p(L | x ; θ)

=
n∑

i=1

∑
T

fj (Li ,T , xi )p(T | Li , xi ; θ)−
n∑

i=1

∑
L,T

fj (L,T , xi )p(L,T | xi ; θ)

I Note: This involves find the probability of all trees/derivations and their

features given an input.

I Dynamic programming: Use variant of inside-outside probabilities

covered in Lecture 3 (no big deal).

50



Gradients: Zettlemoyer and Collins (2012)

I Computing Gradient:

∂

∂θj
log p(L | x ; θ)

=
n∑

i=1

∑
T

fj (Li ,T , xi )p(T | Li , xi ; θ)−
n∑

i=1

∑
L,T

fj (L,T , xi )p(L,T | xi ; θ)

I Note: This involves find the probability of all trees/derivations and their

features given an input.

I Dynamic programming: Use variant of inside-outside probabilities

covered in Lecture 3 (no big deal).

50



Batch vs. Stochastic Gradient Descent

I Batch Gradient

∂

∂θj
log p(y | x ; θ) =

n∑
i=1

fj(xi , yn)−
n∑

i=1

∑
y′∈Y

p(y | xi ; θ)fj(xi , y)

1: Initialize θd to 0
2: While not converged do
3: Calculate δk = ∂O

∂θk
for k = 1,..,d

4: Set each θk = θk + α ∗ δk
9: Return θd

I Stochastic Gradient

∂

∂θj
log p(y | x ; θ) = fj(xi , yn)−

∑
y′∈Y

p(y | xi ; θ)fj(xi , y)

I Online learning: Updates are made at each example.

51



Batch vs. Stochastic Gradient Descent

I Batch Gradient

∂

∂θj
log p(y | x ; θ) =

n∑
i=1

fj(xi , yn)−
n∑

i=1

∑
y′∈Y

p(y | xi ; θ)fj(xi , y)

1: Initialize θd to 0
2: While not converged do
3: Calculate δk = ∂O

∂θk
for k = 1,..,d

4: Set each θk = θk + α ∗ δk
9: Return θd

I Stochastic Gradient

∂

∂θj
log p(y | x ; θ) = fj(xi , yn)−

∑
y′∈Y

p(y | xi ; θ)fj(xi , y)

I Online learning: Updates are made at each example.

51



Stochastic Gradient Ascent: Full

I Dataset: Assume that we have our dataset D = {(xi , yi )}ni=1, feature

vector θd

1: Initialize θd to 0
2: While not converged do
3: Repeat for i = 1, .., n
4: θk = θk + α× (fk(xi , yi )−

∑
y ′∈Y p(y ′ | xi ; θ)fk(xi , y))

9: Return θd

I line 3: Start iterating through dataset

I line 4: Update at each example for LCL objective

I The simplest form, vanilla gradient ascent.

52



Stochastic Gradient Ascent: Full

I Dataset: Assume that we have our dataset D = {(xi , yi )}ni=1, feature

vector θd

1: Initialize θd to 0
2: While not converged do
3: Repeat for i = 1, .., n
4: θk = θk + α× (fk(xi , yi )−

∑
y ′∈Y p(y ′ | xi ; θ)fk(xi , y))

9: Return θd

I line 3: Start iterating through dataset

I line 4: Update at each example for LCL objective

I The simplest form, vanilla gradient ascent.

52



Stochastic Gradient Ascent: Full

I Dataset: Assume that we have our dataset D = {(xi , yi )}ni=1, feature

vector θd

1: Initialize θd to 0
2: While not converged do
3: Repeat for i = 1, .., n
4: θk = θk + α× (fk(xi , yi )−

∑
y ′∈Y p(y ′ | xi ; θ)fk(xi , y))

9: Return θd

I line 3: Start iterating through dataset

I line 4: Update at each example for LCL objective

I The simplest form, vanilla gradient ascent.

52



Overall Model: Zettlemoyer and Collins (2012)

I Compositional Semantic Model: assumes the geo-query

representations and semantics we’ve discussed. X

I Probabilistic Model: Deciding between different analyses, handling

spurious ambiguity. X

I Lexical (Rule) Extraction: Finding set of CCG lexical entries in Λ.

53



GenLex: Lexical rule extraction

I So far we have assumed the existence of a CCG lexical Λ

I GenLex: Take a sentence and logical form and generates lexical items.

GenLex(S,L) = {x := y | x ∈W (S), y ∈ C(L)}

I W(S): set of substrings in input S
I C(L): CCG rule templates or triggers

54



Lexical rule templates (Triggers)

I Templates specify patterns in logical forms (input triggers) and their

mapping to CCG lexical entries (output category).

I Are hand-engineered (down side), which has been subsequently improved

on in Kwiatkowski et al. (2010)

55



Lexical rule templates: Example

Example: Oklahoma borders Texas.

borders(oklahoma′, texas ′)

I W (Oklahoma borders Texas) =

{”Oklahoma”, ”Texas”,”Oklahoma borders”, ...}
I C(borders(oklahoma’,texas’)) = {borders(...)→ (S\NP)/NP :

λy , λx .borders(x , y); texas’→ NP : texas ′, ...}

I GenLex: takes the combination of these.

56



Lexical rule templates: Example

Example: Oklahoma borders Texas.

borders(oklahoma′, texas ′)

I W (Oklahoma borders Texas) =

{”Oklahoma”, ”Texas”,”Oklahoma borders”, ...}

I C(borders(oklahoma’,texas’)) = {borders(...)→ (S\NP)/NP :

λy , λx .borders(x , y); texas’→ NP : texas ′, ...}

I GenLex: takes the combination of these.

56



Lexical rule templates: Example

Example: Oklahoma borders Texas.

borders(oklahoma′, texas ′)

I W (Oklahoma borders Texas) =

{”Oklahoma”, ”Texas”,”Oklahoma borders”, ...}
I C(borders(oklahoma’,texas’)) = {borders(...)→ (S\NP)/NP :

λy , λx .borders(x , y); texas’→ NP : texas ′, ...}

I GenLex: takes the combination of these.

56



Synthesis: Lexical Learning + Parameter Estimation

I Learning: Complete learning algorithm involves joining lexical learning

with log-linear parameter estimation (via stochastic gradient ascent)

I Big Idea: Learn compact lexicons via greedy iterative method that

works with high probability rules/derivations.

57



Synthesis: Lexical Learning + Parameter Estimation

I Step 1: Search for small set of lexical entries to parse data, then parse

and find most probable rules.

I Step 2: Re-estimate log-linear model based on these compact lexical

entries.

58



Results (brief)

I Two benchmark datasets (still being used today).

I Highest results reported at the time of publishing.

I Quite impressive increases in precision (though not so impressive recall).

59



Conclusions and Take-aways

I Introduced (C)CG, a new formalism for semantic parsing.

I Lexicalism: lexical entries describe combination rules.
I Nice formalism for jointly modeling syntax-semantics.

I Log-linear CCG model for parsing from Zettlemoyer and Collins (2012)

I Log-linear models: In particular, conditional log-linear model.
I Gradient methods: gradient-based optimization and (stochastic)

gradient ascent

60



Conclusions and Take-aways

I Introduced (C)CG, a new formalism for semantic parsing.

I Lexicalism: lexical entries describe combination rules.
I Nice formalism for jointly modeling syntax-semantics.

I Log-linear CCG model for parsing from Zettlemoyer and Collins (2012)

I Log-linear models: In particular, conditional log-linear model.
I Gradient methods: gradient-based optimization and (stochastic)

gradient ascent

60



Roadmap

I Next session: start of student resentations!

I 30 minutes each, plus 10-15 for questions.
I Due data: slides (or draft slides) must be submitted one week

advance for approval.
I Questions: I will submit specific question that I expect you to

address in your talk (not exam questions, only meant to help).

I Schedule update: I will give another lecture on the final class session

(another opportunity for writing a reading summary).

61



References I

Clark, S. and Curran, J. R. (2003). Log-linear models for wide-coverage ccg parsing.
In Proceedings of the 2003 conference on Empirical methods in natural language
processing, pages 97–104. Association for Computational Linguistics.

Domingos, P. (2012). A few useful things to know about machine learning.
Communications of the ACM, 55(10):78–87.

Huang, L. (2008). Forest reranking: Discriminative parsing with non-local features. In
ACL, pages 586–594.

Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., and Steedman, M. (2010). Inducing
probabilistic ccg grammars from logical form with higher-order unification. In
Proceedings of the 2010 conference on empirical methods in natural language
processing, pages 1223–1233. Association for Computational Linguistics.
http://www.aclweb.org/anthology/D/D10/D10-1119.pdf.

Steedman, M. (2000). The syntactic process, volume 24. MIT Press.

Woods, W. A. (1973). Progress in natural language understanding: an application to
lunar geology. In Proceedings of the June 4-8, 1973, National Computer
Conference and Exposition, pages 441–450.

Zettlemoyer, L. S. and Collins, M. (2012). Learning to map sentences to logical form:
Structured classification with probabilistic categorial grammars. arXiv preprint
arXiv:1207.1420. http://arxiv.org/abs/1207.1420.

62


