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Lecture Plan

I paper: ?

I general topics: transformation and rewrite rules, the SILT
algorithm, the CKY algorithm, PCFGs, the EM algorithm.
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The Big Picture (reminder)

I Standard processing pipeline

input sem

List samples that contain
every major element

world

JsemK ={S10019,S10059,...}

Semantic Parsing

Interpretation

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /

SAMPLE : (CONTAINS Y X);

(PRINTOUT Y)))

Knowledge Representation

Lunar QA system (?)
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Previous session: Learning from meaning representations

data: (x =two times two plus three,y = (plus (mult 2 2) 3))

I Compositional model : a semantic context-free grammar.

I Learning model: linear classifier on derivation trees.

I Missing
I Rule extraction : (local) rules that get us from x → y
I Parsing algorithm: generate derivations for a given input x

using such rules.
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data: (x =two times two plus three,y = (plus (mult 2 2) 3))

I Compositional model : a semantic context-free grammar.

I Learning model: linear classifier on derivation trees.
I Missing

I Rule extraction : (local) rules that get us from x → y
I Parsing algorithm: generate derivations for a given input x

using such rules.
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Transformation and Rewrite Rules

I Decompose translation into a set of local transformations.

data: (x =two multiplied by two plus three,y = (plus (mult 2 2) 3))

(plus (mult 2 2) 3)

N : 3

3

plus

+

(mult 2 2)

N : 2

2

mult

*

N: 2

2
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Transformation and Rewrite Rules

I Decompose translation into a set of local transformations.

data: (x =two multiplied by two plus three,y = (plus (mult 2 2) 3))

(plus (mult 2 2) 3)

N : 3

3

plus

+

(mult 2 2)

N : 2

2

mult

*

N: 2

2

r1:

N : 2

2 , r2: ’multiplied by’ −→

mult

*
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Transformation and Rewrite Rules

I Decompose translation into a set of local transformations.

data: (x =two multiplied by two plus three,y = (plus (mult 2 2) 3))

(plus (mult 2 2) 3)

N : 3

3

plus

+

(mult 2 2)

N : 2

2

mult

*

N: 2

2

r1:

N : 2

2 , r2:

mult

* , r1:

N : 2

2
−→

(mult 2 2)

.........
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Not a new idea: Early machine translation

(x =Excel vuelve a calcular valores en libro de trabajo,y =Excel recalculates values

in workbook)

?
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Rule-based Semantic Interpretation

Idea: Locally rewrite syntactic structure to semantic representations.

?
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Learning Transformation Rules: ?

I Learn string→ tree transformation rules from (text,MR) pairs
I Components

I Text-meaning pairs (robocup and geoquery)
I MR grammar (compositional model)
I SILT rule induction algorithm
I Greedy matching procedure
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Datasets: Learning from MRs

I Robocup :

(If our p 4 has the ball, our p 4 should shoot, ((bowner our{4}) (do our{4} (shoot)))

RULE

DIRECTIVE

ACTION

shoot

UNUM

4

TEAM

our

do

CONDITION

UNUM

4

TEAM

our

bowner

MR Grammar

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bowner TEAM UNUM

DIRECTIVE −→ do TEAM UNUM ACTION

TEAM −→ our
UNUM −→ 4
ACTION −→ shoot
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Bottom-up, String → Tree Rule Matching

RULE

DIRECTIVE

ACTION

shoot

UNUM

4

TEAM

our

do

CONDITION

UNUM

4

TEAM

our

bowner

MR Grammar

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bowner TEAM UNUM

DIRECTIVE −→ do TEAM UNUM ACTION

TEAM −→ our
UNUM −→ 4
ACTION −→ shoot

Transformation: If our player 4 has the ball, our player 4 should shoot.

Input: If our player 4 has the ball, our player 4 should shoot.
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Bottom-up, String → Tree Rule Matching

RULE

DIRECTIVE

ACTION

shoot

UNUM

4

TEAM

our

do

CONDITION

UNUM

4

TEAM

our

bowner

MR Grammar

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bowner TEAM UNUM

DIRECTIVE −→ do TEAM UNUM ACTION

TEAM −→ our
UNUM −→ 4
ACTION −→ shoot

Transformation: If TEAM player 4 has the ball, TEAM player 4 should shoot.

Input: If our player 4 has the ball, our player 4 should shoot.
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Bottom-up, String → Tree Rule Matching

RULE

DIRECTIVE

ACTION

shoot

UNUM

4

TEAM

our

do

CONDITION

UNUM

4

TEAM

our

bowner

MR Grammar

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bowner TEAM UNUM

DIRECTIVE −→ do TEAM UNUM ACTION

TEAM −→ our
UNUM −→ 4
ACTION −→ shoot

Transformation: If TEAM UNUM has the ball, TEAM UNUM should shoot.

Input: If our player 4 has the ball, our player 4 should shoot.
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Bottom-up, String → Tree Rule Matching

RULE

DIRECTIVE

ACTION

shoot

UNUM

4

TEAM

our

do

CONDITION

UNUM

4

TEAM

our

bowner

MR Grammar

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bowner TEAM UNUM

DIRECTIVE −→ do TEAM UNUM ACTION

TEAM −→ our
UNUM −→ 4
ACTION −→ shoot

Transformation: If TEAM UNUM has the ball, TEAM UNUM should ACTION.

Input: If our player 4 has the ball, our player 4 should shoot.
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Bottom-up, String → Tree Rule Matching

RULE

DIRECTIVE

ACTION

shoot

UNUM

4

TEAM

our

do

CONDITION

UNUM

4

TEAM

our

bowner

MR Grammar

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bowner TEAM UNUM

DIRECTIVE −→ do TEAM UNUM ACTION

TEAM −→ our
UNUM −→ 4
ACTION −→ shoot

Transformation: If COND=[TEAM UNUM has ball], TEAM UNUM should ACTION.

Input: If our player 4 has the ball, our player 4 should shoot.
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Bottom-up, String → Tree Rule Matching

RULE

DIRECTIVE

ACTION

shoot

UNUM

4

TEAM

our

do

CONDITION

UNUM

4

TEAM

our

bowner

MR Grammar

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bowner TEAM UNUM

DIRECTIVE −→ do TEAM UNUM ACTION

TEAM −→ our
UNUM −→ 4
ACTION −→ shoot

Transformation: If CONDITION, TEAM UNUM should ACTION.

Input: If our player 4 has the ball, our player 4 should shoot.
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Bottom-up, String → Tree Rule Matching

RULE

DIRECTIVE

ACTION

shoot

UNUM

4

TEAM

our

do

CONDITION

UNUM

4

TEAM

our

bowner

MR Grammar

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bowner TEAM UNUM

DIRECTIVE −→ do TEAM UNUM ACTION

TEAM −→ our
UNUM −→ 4
ACTION −→ shoot

Transformation: If CONDITION, DIR=[TEAM UNUM should ACTION].

Input: If our player 4 has the ball, our player 4 should shoot.
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Bottom-up, String → Tree Rule Matching

RULE

DIRECTIVE

ACTION

shoot

UNUM

4

TEAM

our

do

CONDITION

UNUM

4

TEAM

our

bowner

MR Grammar

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bowner TEAM UNUM

DIRECTIVE −→ do TEAM UNUM ACTION

TEAM −→ our
UNUM −→ 4
ACTION −→ shoot

Transformation: If CONDITION, DIRECTIVE.

Input: If our player 4 has the ball, our player 4 should shoot.
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Bottom-up, String → Tree Rule Matching

RULE

DIRECTIVE

ACTION

shoot

UNUM

4

TEAM

our

do

CONDITION

UNUM

4

TEAM

our

bowner

MR Grammar

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bowner TEAM UNUM

DIRECTIVE −→ do TEAM UNUM ACTION

TEAM −→ our
UNUM −→ 4
ACTION −→ shoot

Transformation: RULE=[If CONDITION DIRECTIVE].

Input: If our player 4 has the ball, our player 4 should shoot.
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Bottom-up, String → Tree Rule Matching

RULE

DIRECTIVE

ACTION

shoot

UNUM

4

TEAM

our

do

CONDITION

UNUM

4

TEAM

our

bowner

MR Grammar

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bowner TEAM UNUM

DIRECTIVE −→ do TEAM UNUM ACTION

TEAM −→ our
UNUM −→ 4
ACTION −→ shoot

Transformation: RULE

Input: If our player 4 has the ball, our player 4 should shoot.
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SILT: Semantic Interpretation by Learning Transformations

I Extract mapping rules from strings to production rules.

I Bottom-up, find generalization between positive examples.

I Rank by goodness of fit over all examples.
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SILT: General Algorithm

1: Function Silt (T = {(x1, y1), ..., (xn, yn)},GMR)
2: Set Π = T with parsed representations using GMR

3: Set PΠ = productions with positive examples in T
3: Set NΠ = productions with negative examples in T
4: Set L = {}
5: While no more good rules do
6: R∗ = FindBestRules(GMR ,PΠ,NΠ)
7: L = L ∪ R∗

8: apply rules in L to sentences in T
9: Return L

T = {(x1 = If our p 4 has the ball our p4 should shoot, y2 = ((bowner our{4}) (do our{4} (shoot))),

(x2 = when p 4 has possession p4 must pass, y2 = ((bowner our{4}) (do our{4} (pass))), ...}

PΠ[ACTION → shoot] = {x1,...}
NΠ[ACTION → shoot] = {x2,...}
PΠ[ACTION → pass] = {x2,...}
NΠ[ACTION → pass] = {x1,...}
PΠ[UNUM → 4] = {x1, x2,...}
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T = {(x1 = If our p 4 has the ball our p4 should shoot, y2 = ((bowner our{4}) (do our{4} (shoot))),

(x2 = when p 4 has possession p4 must pass, y2 = ((bowner our{4}) (do our{4} (pass))), ...}

PΠ[ACTION → shoot] = {x1,...}
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SILT: Find Best Rules

1: Function FindBestRules (GMR ,PΠ,NΠ)
2: Set R = {}
3: Foreach π ∈ GMR do
4: Set Rπ to be maximally-specific rules from PΠ

5: Repeat for k = 1000
6: Choose r1, r2 at random
7: g = Generalize(r1, r2, π)
8: Add g to Rπ
9: R = R ∪ Rπ
10: r∗ = arg maxr∈R goodness(r)
11: Remove positive examples covered by r∗ from PΠ

12: Return r∗

Example

line 3: π = UNUM → 4, PΠ[UNUM→ 4] = {x1, x2}
Rπ = {x1 ⇒ UNUM→ 4, x2 ⇒ UNUM→ 4, ...}

line 6: r1 = (x1 ⇒ UNUM→ 4), r2 = (x2 ⇒ UNUM→ 4)

line 7: g = (x1 ∩ x2)⇒ UNUM→ 4

if our p 4 has the ball ... should shoot ∩ when our p 4 ... should pass =

our p 4 ⇒ UNUM → 4
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SILT: Full Algorithm
1: Function Silt (T = {(x1, y1), ..., (xn, yn)},GMR)
2: Set Π = T with parsed representations using GMR

3: Set PΠ = productions with positive examples in T
3: Set NΠ = productions with negative examples in T
4: Set L = {}
5: While no more good rules do
6: R∗ = FindBestRules(GMR ,PΠ,NΠ)
7: L = L ∪ R∗

8: apply rules in L to sentences in T
9: Return L

1: Function FindBestRules (GMR ,PΠ,NΠ)
2: Set R = {}
3: Foreach π ∈ GMR do
4: Set Rπ to be maximally-specific rules from PΠ

5: Repeat for k = 1000
6: Choose r1, r2 at random
7: g = Generalize(r1, r2, π)
8: Add g to Rπ
9: R = R ∪ Rπ
10: r∗ = arg maxr∈R goodness(r)
11: Remove positive examples covered by r∗ from PΠ

12: Return r∗
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Experiment results

I Main metric: Does my parser generate the gold
representations?

I Cross-validation: Test on multiple test sets (variation of the
standard train-test setup)

I Motivation (in this case): Small datasets. A single test set
might not be a good representative sample.

I Recall: How many inputs received a full analysis/parse?
Precision: out of those, how many were correct?
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Results
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Why does this work?

I goodness: potential rules compete in terms of their global coverage or
goodness (bottom-up, or simple to complex)

Goodness(r) =
pos(r)2

pos(r) + neg(r)

I greedy: good rules are applied greedily, MR grammar is deterministic.

I There is no turning back. Errors propagate.
I No way to handle or preserve ambiguity.
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A non-greedy semantic parser?

Idea: The best local option might not (in general) be the best choice. Try

to consider all possibilities.

’at the REGION’ ⇒ CONDITION → ((bpos REGION))
’at the REGION’ ⇒ CONDITION → ((ppos REGION))

If the player is [ at the REGION ], the goalie should guard the goal.
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A non-greedy semantic parser?

Idea: The best local option might not (in general) be the best choice. Try

to consider all possibilities.

’at the REGION’ ⇒ CONDITION → ((bpos REGION))
’at the REGION’ ⇒ CONDITION → ((ppos REGION))
’player at the REGION’ ⇒ CONDITION → ((ppos REGION))

If the [ player is at the REGION ], the goalie should guard the goal.
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Considering all possibilities?

I Ambiguities can grow exponentially with length
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CKY Parsing Algorithm

I Polynomial-time, bottom-up parsing algorithm for CFGs, uses
dynamic programming.

I dynamic programming: breaks problems into smaller
sub-problems, local solutions are shared.

I The basis of virtually all decoding methods we will cover in
this class (from MT, parsing, .., very important!).
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Brief review: Context-Free Grammars

I context-free grammar (CFG):

G = (Σ,N, S ,R)

I N : set of terminal symbols.
I Σ : set of non-terminal symbols.
I R : set of rules = {N → α | α ∈ (N ∪ Σ)∗}
I S : start symbol

I Chomsky Normal-Form (CNF): rules in R take the form:

I A→ B C , where B,C ∈ N
I A→ a, where a ∈ Σ
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CKY: Chart Filling

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bpos REGION | ppos REGION

DIRECTIVE −→ PLAYER ACTION

UNUM −→ 4
ACTION −→ shoot | pass
ppos −→ PLAYER

Transformation rules
PLAYER −→ ’p4’ | ’then’ | ’pass’ | ’shoots’
REGION −→ ’at the goal’ | ’when’
shoot −→ ’p4’ | ’shoots’ | if
pass −→ ’pass’ | ’then should’
λ −→ ’if’ | ’is’ | ’then’ | ’when’

when p4 is-at-the-goal p4 shoots.

1 2 3 4 5

0

1

2

3

4
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0when1 p4 is-at-the-goal p4 shoots.

1 2 3 4 5

0 λ,REG.

1

2

3

4
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CKY: Chart Filling

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bpos REGION | ppos REGION

DIRECTIVE −→ PLAYER ACTION

UNUM −→ 4
ACTION −→ shoot | pass
ppos −→ PLAYER

Transformation rules
PLAYER −→ ’p4’ | ’then’ | ’pass’
REGION −→ ’at the goal’ | ’when’
shoot −→ ’p4’ | ’shoots’ | if
pass −→ ’pass’ | ’then should’
λ −→ ’if’ | ’is’ | ’then’ | ’when’

when 1p42 is-at-the-goal p4 shoots.

1 2 3 4 5

0 λ,REG.

1 sh.,PL.

2

3

4
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CKY: Chart Filling

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bpos REGION | ppos REGION

DIRECTIVE −→ PLAYER ACTION

UNUM −→ 4
ACTION −→ shoot | pass
ppos −→ PLAYER

Transformation rules
PLAYER −→ ’p4’ | ’then’ | ’pass’ | ’shoots’
REGION −→ ’at the goal’ | ’when’
shoot −→ ’p4’ | ’shoots’ | if
pass −→ ’pass’ | ’then should’
λ −→ ’if’ | ’is’ | ’then’ | ’when’

when p4 2is-at-the-goal3 p4 shoots.

1 2 3 4 5

0 λ,REG.

1 sh.,PL.

2 REG.

3

4
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CKY: Chart Filling

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bpos REGION | ppos REGION

DIRECTIVE −→ PLAYER ACTION

UNUM −→ 4
ACTION −→ shoot | pass
ppos −→ PLAYER

Transformation rules
PLAYER −→ ’p4’ | ’then’ | ’pass’ | ’shoots’
REGION −→ ’at the goal’ | ’when’
shoot −→ ’p4’ | ’shoots’ | if
pass −→ ’pass’ | ’then should’
λ −→ ’if’ | ’is’ | ’then’ | ’when’

when p4 is-at-the-goal p4 shoots.

1 2 3 4 5

0 λ,REG.

1 sh.,PL.

2 REG.

3 sh.,PL.

4 sh.,PL.
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CKY: Chart Filling

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bpos REGION | PLAYER REGION

DIRECTIVE −→ PLAYER ACTION

UNUM −→ 4
ACTION −→ shoot | pass
ppos −→ PLAYER

Transformation rules
PLAYER −→ ’p4’ | ’then’ | ’pass’ | ’shoots’
REGION −→ ’at the goal’ | ’when’
shoot −→ ’p4’ | ’shoots’ | if
pass −→ ’pass’ | ’then should’
λ −→ ’if’ | ’is’ | ’then’ | ’when’

0when p4 is-at-the-goal3 p4 shoots.

1 2 3 4 5

0 λ,REG. COND.

1 sh.,PL.

2 REG.

3 sh.,PL.

4 sh.,PL.
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CKY: Chart Filling

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bpos REGION | PLAYER REGION

DIRECTIVE −→ PLAYER ACTION

UNUM −→ 4
ACTION −→ shoot | pass
ppos −→ PLAYER

Transformation rules
PLAYER −→ ’p4’ | ’then’ | ’pass’ | ’shoots’
REGION −→ ’at the goal’ | ’when’
shoot −→ ’p4’ | ’shoots’ | if
pass −→ ’pass’ | ’then should’
λ −→ ’if’ | ’is’ | ’then’ | ’when’

when p4 is-at-the-goal 3p4 shoots5.

1 2 3 4 5

0 λ,REG. COND.

1 sh.,PL.

2 REG.

3 sh.,PL. DIR.

4 sh.,PL.
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CKY: Full Algorithm

1: Function CKY(G, x = a1, a2, ..., an)
2: Set T = ∅
3: for all j from 1 up n do
4: for all rules A→ aj in GR do
5: add [j − 1,A, j ] to T
6: for all i from j − 2 down to 0 do
7: for all k from i + 1 up to j − 1 do
8: for all rules A→ B C in GR do
9: if rules [i ,B, k] and [k,C , j ] are in T then
10: add [i ,A, j ] to T
11: if [0,GS , n] is in T then
12: return true

I lines 3-10: chart filling routine.

I lines 11-12: recognition (is this a string in my language?)

I key: every smaller span is explored before each larger span.
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Non-greedy parsing

I goodness: Is this rule used in valid derivations?

I Example: ’when’ ⇒ REGION

when p4 is-at-the-goal p4 shoots.

1 2 3 4 5

0 λ,REG. COND. RULE

1 sh.,PL.

2 REG.

3 sh.,PL. DIR.

4 sh.,PL.
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Non-greedy parsing

I goodness: Is this rule used in a valid derivation?

I probabilistic: quantify this in terms of probabilities
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Plan for lecture

I Introduce probabilistic grammars as an alternative tool to
solve these problems.

I Setting: rather than extract rules in a greedy fashion, we
extract many rules then learn the good rules.
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Probabilistic Context-Free Grammars

I probabilistic context-free grammar (PCFG):

Gθ = (Σ,N, S ,R, θ)

I N : set of terminal symbols.
I Σ : set of non-terminal symbols.
I R : set of rules = {N → α | α ∈ (N ∪ Σ)∗}
I S : start symbol
I θ: parameters : θNi→αi → [0, 1) such that

∀RN

∑
(N→α)∈RN

θN → α = 1.0

(prob. distribution over lhs rules)
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PCFG Basics

S −→ NP VP (1.0)
PP −→ P NP (1.0)
VP −→ V NP (0.7) | VP PP (0.3)
P −→ with (1.0)
V −→ saw (1.0)
NP −→ NP PP (0.4)
NP −→ astronomers (0.1)
NP −→ ears (0.18)
NP −→ saw (0.04)
NP −→ stars (0.18))
NP −→ telescopes (0.1)

d1

S1.0

VP0.7

NP0.4

PP1.0

NP0.18

ears

P1.0

with

NP0.18

stars

V1.0

saw

NP0.1

astronomers

d2

S1.0

VP0.7

PP1.0

NP0.18

ears

P1.0

with

VP1.0

NP0.18

stars

V1.0

saw

NP0.1

astronomers

I probability of a derivation:

pθ(d) =
∏

(N→α) in d

θN→α
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PCFG Basics

d1

S1.0

VP0.7

NP0.4

PP1.0

NP0.18

ears

P1.0

with

NP0.18

stars

V1.0

saw

NP0.1

astronomers

d2

S1.0

VP0.7

PP1.0

NP0.18

ears

P1.0

with

VP1.0

NP0.18

stars

V1.0

saw

NP0.1

astronomers

I probability of a derivation:

pθ(d) =
∏

(N→α) in d

θN→α

I pθ(d1) = 1.0 ∗ 0.1 ∗ 0.7 ∗ 1.0 ∗ 0.4 ∗ 0.18 ∗ 1.0 ∗ 1.0 ∗ 0.18 = 0.0009072

I pθ(d2) = 1.0 ∗ 0.1 ∗ 0.3 ∗ 0.7 ∗ 1.0 ∗ 0.18 ∗ 1.0 ∗ 1.0 ∗ 0.18 = 0.0015876

I probability of a sentence: x

pGθ (x = w1,w2, ...,wn) =
∑
d

pθ(d)
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Efficient computation of probabilities

I Probability of a sentence:

pGθ (x = w1,w2, ...,wn) =
∑
d

pθ(d)

I requires find all parse derivations d (same problem as before)
I We can use dynamic programming again to solve this.
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Efficient computation of probabilities

I Probability of a sentence:

pGθ (x = w1,w2, ...,wn) =
∑
d

pθ(d)

I requires find all parse derivations d (same problem as before)
I We can use dynamic programming again to solve this.
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Inside Probabilities

S

A

wj+1N

wj...wi

wi−1

I definition: βi,j(N) = P(wi , ...,wj | N,Gθ)

I computed recursively and bottom-up:
I Base:

βi,i+1(N) = θN→wi,i+1

I Else:
βi,j(N) =

∑
B,C

∑
i<=k<=j

θN→B C βi,k(B) βk+1,j(C)
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Inside Probabilities

S

A

wj+1N

wj...wi

wi−1

I definition: βi,j(N) = P(wi , ...,wj | N,Gθ)

I computed recursively and bottom-up:
I Base:

βi,i+1(N) = θN→wi,i+1

I Else:
βi,j(N) =

∑
B,C

∑
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θN→B C βi,k(B) βk+1,j(C)
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Inside Probabilities: Example

S −→ NP VP (1.0)
PP −→ P NP (1.0)
VP −→ V NP (0.7) | VP PP (0.3)
P −→ with (1.0)
V −→ saw (1.0)
NP −→ NP PP (0.4)
NP −→ astronomers (0.1)
NP −→ ears (0.18)
NP −→ saw (0.04)
NP −→ stars (0.18))
NP −→ telescopes (0.1)

fragment: ... 6with7 ears8 ...

β6,7(P) = 1.0

β7,8(NP) = 0.18

β6,8(PP) = 1.0 ∗ 1.0 ∗ 0.18

...

β0,n(S) = ...

I definition: βi,j(N) = P(wi , ...,wj | N,Gθ)

I computed recursively and bottom-up:
I Base:

βi,i+1(N) = θN→wi,i+1

I Else:
βi,j(N) =

∑
B,C

∑
i<=k<=j

θN→B C βi,k(B) βk+1,j(C)
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Outside Probabilities

S

...

...wj+1N

wj...wi

wi−1...

I definition: αi,j(N) = P(w0, ..,wi−1,Ni,j ,wj+1, ...,wn | Gθ)

I computed recursively and top-down:
I Base:

α0,n(S) = 1

I Else:

αi,j (N) =
∑
B,C

∑
0<=k<i

θB→C N βk,i−1(C)αk,j (B)+
∑
B,C

∑
n>=k>i

θB→C Nβj+1,k (C)αi,k (B)
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Outside Probabilities

S

...

...wj+1N

wj...wi

wi−1...

I definition: αi,j(N) = P(w0, ..,wi−1,Ni,j ,wj+1, ...,wn | Gθ)

I computed recursively and top-down:
I Base:

α0,n(S) = 1

I Else:

αi,j (N) =
∑
B,C

∑
0<=k<i

θB→C N βk,i−1(C)αk,j (B)+
∑
B,C

∑
n>=k>i

θB→C Nβj+1,k (C)αi,k (B)
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Outside Probabilities

S

...

...wj+1N

wj...wi

wi−1...

I definition: αi,j(N) = P(w0, ..,wi−1,Ni,j ,wj+1, ...,wn | Gθ)

I computed recursively and top-down:
I Base:

α0,n(S) = 1

I Else:

αi,j (N) =
∑
B,C

∑
0<=k<i

θB→C N βk,i−1(C)αk,j (B)+
∑
B,C

∑
n>=k>i

θB→C Nβj+1,k (C)αi,k (B)

54



Computing Probabilities: take-aways

I Idea: inside and outside probabilities allows us to efficiently compute

probabilities (e.g. probability of a sentence)

I Can be integrated within a chart-filling procedure (e.g. the CKY

algorithm).

I For a given sentence, we compute the probability of a rule N spanning
from i to j :

P(w0, ...,wn,Ni,j | Gθ) = αi,j(N)βi,j(N)
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Parameter Estimation and Learning

I Objective (english): We want the find parameters θ that maximize the

probability of our training dataset D (= x1,...,xn).

I

argmaxGθ

n∏
i

pGθ(xi )
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Back to Semantic Parsing

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bpos REGION | ppos REGION

DIRECTIVE −→ PLAYER ACTION

UNUM −→ 4
ACTION −→ shoot | pass
ppos −→ PLAYER

Transformation rules
PLAYER −→ ’p4’ | ’then’ | ’pass’ | ’shoots’
REGION −→ ’at the goal’ | ’when’
shoot −→ ’p4’ | ’shoots’ | if
pass −→ ’pass’ | ’then should’
λ −→ ’if’ | ’is’ | ’then’ | ’when’

I We have a dataset of text and outputs.

I We have mapping rules that over-generate, want to find a grammar the

tells us something about the goodness of rule.
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Parameter Estimation and Learning

I Objective (english): We want the find parameters θ that maximize the

probability of our training dataset D (= x1,...,xn).

I

argmaxGθ

n∏
i

pGθ(xi )

I Maximum Likelihood Estimation (MLE) (with full information)

θN→α =
count(N → α)∑
α′ count(N → α′)

I problem: we often don’t have full information
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Back to Semantic Parsing

RULE −→ CONDITION DIRECTIVE

CONDITION −→ bpos REGION | ppos REGION

DIRECTIVE −→ PLAYER ACTION

UNUM −→ 4
ACTION −→ shoot | pass
ppos −→ PLAYER

Transformation rules
PLAYER −→ ’p4’ | ’then’ | ’pass’ | ’shoots’
REGION −→ ’at the goal’ | ’when’
shoot −→ ’p4’ | ’shoots’ | if
pass −→ ’pass’ | ’then should’
λ −→ ’if’ | ’is’ | ’then’ | ’when’

I We have a dataset of text and outputs.

I We have mapping rules that over generate, want to find a grammar the

tells us something about the goodness of rule.

I We don’t have the actually target derivations for each x .
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Expectation-Maximization (EM)

I Iterative technique for doing MLE in cases involving hidden (or latent)

variables and incomplete data.

I Makes an initial (possibly random) guess about parameters, then

iteratively repeats two steps:

I e-step: Estimates counts using current model parameters.
I m-step: Re-estimate parameters based on these completions.

I converge: Will eventually converge (not proved here).

I inside-outside algorithm: counts are based on inside-outside

probabilities.
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Inside-Outside Algorithm (rough outline)

1: Function Inside-Outside(Gθ,D = x1, .., xn)
2: Until converge do
2: Set C = ∅
3: for all sentences i from 1 up n do
4: compute inside probabilities
5: compute outside probabilities
6: for all rules of the form N → B C do
7: C[N → B C ] += θN→B C

pGθ (xi )

∑
0≤i≤j≤k≤n αi,k(N)βi,k(B)βj+1,k(C)

8 : for all rules of the form N → w C do
9: C[N → w ] += θN→B C

pGθ (xi )

∑
0≤n βi,i+1(N)

10: for all rules N → δ from 1 up n do
11: θN→δ = C[N→δ]∑

δ′C(N→δ′)
12: return Gθ

I e-step: lines 3-9, m-step: lines 10-11.
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Big Ideas:

I Greedy versus non-greedy parsing and extraction of rules

I Learning: two different notions of goodness
I Introduced the basics of (P)CFGs, and one particular

parameter estimation method.

I project idea: re-implement Kate’s model as a PCFG learner.
I presentation papers: ??
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Roadmap

I Lecture 2 (today): rule extraction, decoding (parsing
perspective)

I Lecture 3: rule extraction, decoding (MT perspective)

I Lecture 4: structured classification and prediction.
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